Self-focusing of an optical beam in cold plasmafreeuni.edu.ge/sites/default/files/Giorgi...

Preview:

Citation preview

Self-focusing of an optical beam in

cold plasma

Gio Chanturia

Free University 1

Intro

What do we have?

Free University 2

A laser beam (ultra short). Cold plasma (collisionless).

Self-focusing of a beam in certain mediums

Due to non-linearity of medium, the beam focuses itself.

Free University 3

Cold plasma and short pulse as our model

There are reasons, we use these models:

Free University 4

Cool plasma model:

Ponderomotive effect;

Due to electromagnetic field.

Relativistic effect;

Due to free electrons in plasma.

NO thermal effect.

Short laser pulse model:

Short time scale;

No self-focusing process for quasineutral plasma.

Massive ions do not have time to respond

and therefore stay immobile.

Describing our system mathematically

What do we need to describe our system?

Free University 5

Maxwell’s equations and equation of motion for a relativistic electrons:

Plasma current:

Electron velocity:

𝑱 = βˆ’π‘’π‘›π‘’π’— = βˆ’πœ”π‘2

4πœ‹π‘

𝑁𝑒

1 + 𝐼𝑛𝑨

𝒗 =𝑷

π‘šπ›Ύ=

πœ–

π‘šπ‘

𝑨

1 + 𝐼𝑛

Amplitude: 𝑨 = π‘Žπ‘› 𝒓, 𝑑 𝑒𝑖 π‘˜0π‘§βˆ’πœ”0π‘‘βˆ’πœ“ 𝒓,𝑑 𝒙 + 𝑖 π’š

𝑁𝑒 = 1 +π›Ώπ‘›π‘’π‘›π‘œ

Assumptions to deal with our calculations

Assumptions for amplitude and phase equations:

Free University 6

Firstly, as we deal with axial symmetry.

That is, when none of the functions depend on πœƒ and we’re left with only two variables:

π‘Ž π‘Ÿ, 𝑧 = π‘Ž π‘Ÿ

πœ“ π‘Ÿ, 𝑧 = 𝑓 𝑧 + 𝑔(π‘Ÿ)

π‘₯, 𝑦, 𝑧 β†’ (π‘Ÿ, πœƒ, 𝑧)

Secondly, we assume, that amplitude doesn’t vary towards 𝑧 direction.

We allow phase to modulate and seek for solution as a sum of individual functions.

The first simplification

Free University 7

Applying previous assumptions and separating variables, we get:

1

π‘Ž

𝑑2π‘Ž

π‘‘π‘Ÿ2βˆ’

𝑑𝑔

π‘‘π‘Ÿ

2

βˆ’1

πœ†π‘2

𝑁𝑒

1 + π‘Ž2= 𝐢1

𝑑2𝑔

π‘‘π‘Ÿ2+

1

π‘Ž2𝑑(π‘Ž2)

π‘‘π‘Ÿ

𝑑𝑔

π‘‘π‘Ÿ= 0

These equations still look tricky. So, let us apply the slab limit:

{separation constant}

𝑦

π‘₯

𝑦 β†’ 0π‘Ÿ β†’ π‘₯

Slab limit results

Free University 8

Within the slab limit we have:

1

π‘Ž

𝑑2π‘Ž

𝑑π‘₯2βˆ’πΆ42

π‘Ž4βˆ’

1

πœ†π‘2

𝑁𝑒

1 + π‘Ž2= 𝐢1

𝑁𝑒 = 1 + πœ†π‘2 𝑑2

𝑑π‘₯21 + π‘Ž2

Which combines into:

1

π‘Ž

𝑑2π‘Ž

𝑑π‘₯2βˆ’πΆ42

π‘Ž4βˆ’

1

πœ†π‘2 1 + π‘Ž2

βˆ’1

1 + π‘Ž2

𝑑2

𝑑π‘₯21 + π‘Ž2 = 𝐢1

Lagrangian analogy

Free University 9

The last equation can be written in a form:

We know from the least action principle, that Lagrangian of a particle is written like this:

𝐿 = 𝑔 π‘Žπ‘Žβ€² 2

2βˆ’ 𝑉(π‘Ž)

Which by Nother’s theorem gives:

𝑔 π‘Ž π‘Žβ€²β€² +1

2

𝑑𝑔

π‘‘π‘Žπ‘Žβ€² 2 βˆ’

πœ•π‘‰

πœ•π‘Ž= 0 ≑ 𝐺(π‘Ž, π‘Žβ€², π‘Žβ€²β€²)

1

π‘Ž

𝑑2π‘Ž

𝑑π‘₯2βˆ’πΆ42

π‘Ž4βˆ’

1

πœ†π‘2 1 + π‘Ž2

βˆ’1

1 + π‘Ž2

𝑑2

𝑑π‘₯21 + π‘Ž2 βˆ’ 𝐢1 = 0 ≑ 𝐹(π‘Ž, π‘Žβ€², π‘Žβ€²β€²)

Lagrangian analogy

Free University 10

If for some integrating factor πœ‡ π‘Ž :

Then we will be able to find the β€œpotential” of amplitude and therefore describe the behavior of it.

𝐹 π‘Ž, π‘Žβ€², π‘Žβ€²β€² βˆ™ πœ‡ π‘Ž = 𝐺(π‘Ž, π‘Žβ€², π‘Žβ€²β€²)

Making calculations in this manner and flattening the metric by transformation

π‘Ž = sinh(𝑦)

We obtain:

𝑉 𝑦 =𝐢42

2 [sinh 𝑦 ]2βˆ’ cosh 𝑦 βˆ’

𝐢12[sinh 𝑦 ]2

(written in dimensionless transverse coordinate πœ‰ = π‘₯/πœ†π‘)

Analyzing β€œpotential”

Free University 11

𝑉 𝑦 =𝐢42

2 [sinh 𝑦 ]2βˆ’ cosh 𝑦 βˆ’

𝐢12[sinh 𝑦 ]2

𝐢42=0

-1<𝐢1<0

Analyzing β€œpotential”

Free University 12

𝑉 𝑦 =𝐢42

2 [sinh 𝑦 ]2βˆ’ cosh 𝑦 βˆ’

𝐢12[sinh 𝑦 ]2

𝐢42=0

𝐢1>0

Analyzing β€œpotential”

Free University 13

𝑉 𝑦 =𝐢42

2 [sinh 𝑦 ]2βˆ’ cosh 𝑦 βˆ’

𝐢12[sinh 𝑦 ]2

𝐢42=0

-1>𝐢1

Analyzing β€œpotential”

Free University 14

𝑉 𝑦 =𝐢42

2 [sinh 𝑦 ]2βˆ’ cosh 𝑦 βˆ’

𝐢12[sinh 𝑦 ]2

1≫ 𝐢42 >0

-1<𝐢1<0

Analyzing β€œpotential”

Free University 15

𝑉 𝑦 =𝐢42

2 [sinh 𝑦 ]2βˆ’ cosh 𝑦 βˆ’

𝐢12[sinh 𝑦 ]2

𝐢1>0

1≫ 𝐢42 >0

Analyzing β€œpotential”

Free University 16

𝑉 𝑦 =𝐢42

2 [sinh 𝑦 ]2βˆ’ cosh 𝑦 βˆ’

𝐢12[sinh 𝑦 ]2

-1>𝐢1

1≫ 𝐢42 >0

Analyzing β€œpotential”

Free University 17

-1>𝐢1

1≫ 𝐢42 >0𝐢4

2=0

Summary:

𝐢1>0

-1<𝐢1<0

-1>𝐢1

𝐢1>0

-1<𝐢1<0

Physical values

Free University 18

𝑉 𝑦 = βˆ’cosh 𝑦 βˆ’πΆ12[sinh 𝑦 ]2

νœ€ 𝑦 > βˆ’3

2cosh 𝑦 βˆ’ 𝐢1[sinh 𝑦 ]2

𝑁𝑒 > 0

Not every point of our potential corresponds to a

physical value.

To find out, a meaningful (meaning, useful for us in

this particular problem) values, we have to

remember condition:

Electron density can not be negative.

Exact solutions

π‘Ž =2πœ…sech(πœ…πœ‰)

1 βˆ’ πœ…2sech2(πœ…πœ‰)

Free University 19

πœ…2 = 1 + πœ†π‘2𝐢1 πœ‰ = π‘₯/πœ†π‘

Thank you!

β€’ T.Kurki-Suonio, P.J. Morrison, T.Tajima –

β€œSelf-focusing of an optical beam in plasma”;

β€’ Stockholm’s Royal Institute of Technology

– β€œNonlinear Optics 5A5513 (2003)”;

β€’ Wolfram’s Mathematica (plots);

Free University 20

Sources:

Recommended