Schwarz waveform relaxation algorithms : theory and ... · }For a given problem, split the domain :...

Preview:

Citation preview

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Schwarz waveform relaxation algorithms : theoryand applications

Laurence HALPERN

LAGA - Universite Paris 13

DD17. July 2006

1 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Outline

1 Introduction

2 The SWR algorithm for advection diffusion equationDescriptionNumerical experimentsBack to the theoretical problem

3 The two-dimensional wave equationDirichlet transmission conditionsOptimized algorithms with overlap

4 Conclusion und perspectives

2 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Coupling process

Issues

♦ For a given problem, split the domain : domain decomposition.

3 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Coupling process

Issues

♦ For a given problem, split the domain : domain decomposition.

♦ For a given problem, different numerical methods in different zones :FEM/FD, SM/FEM, AMR.

3 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Coupling process

Issues

♦ For a given problem, split the domain : domain decomposition.

♦ For a given problem, different numerical methods in different zones :FEM/FD, SM/FEM, AMR.

♦ Couple two different models in different zones.

3 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Coupling process

Issues

♦ For a given problem, split the domain : domain decomposition.

♦ For a given problem, different numerical methods in different zones :FEM/FD, SM/FEM, AMR.

♦ Couple two different models in different zones.

♦ Furthermore the codes can be on distant sites.

3 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

DDM for evolution problems

Usual methods

Explicit + interpolation − > exchange of information every time step− > time consuming, possibly unstable for hyperbolic problems.

4 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

DDM for evolution problems

Usual methods

Explicit + interpolation − > exchange of information every time step− > time consuming, possibly unstable for hyperbolic problems. Implicit − > uniform time step.

4 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

DDM for evolution problems

The goals

Different time and space steps in different subdomains,

Different models in different subdomains,

Different computing sites,

Easy to use, fast and cheap.

4 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

DDM for evolution problems

The goals

Different time and space steps in different subdomains,

Different models in different subdomains,

Different computing sites,

Easy to use, fast and cheap.

The means

Work on the PDE level, globally in time,

Split the space domain,

Use time windows,

Use the physical transmission conditions, transmit with improved(optimal/optimized) transmission conditions.

Then discretize separately..

4 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

DDM for evolution problems

The goals

Different time and space steps in different subdomains,

Different models in different subdomains,

Different computing sites,

Easy to use, fast and cheap.

The means

Work on the PDE level, globally in time,

Split the space domain,

Use time windows,

Use the physical transmission conditions, transmit with improved(optimal/optimized) transmission conditions.

Then discretize separately..

Optimized Schwarz Waveform Relaxation

4 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Outline

1 Introduction

2 The SWR algorithm for advection diffusion equationDescriptionNumerical experimentsBack to the theoretical problem

3 The two-dimensional wave equationDirichlet transmission conditionsOptimized algorithms with overlap

4 Conclusion und perspectives

5 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Outline

1 Introduction

2 The SWR algorithm for advection diffusion equationDescriptionNumerical experimentsBack to the theoretical problem

3 The two-dimensional wave equationDirichlet transmission conditionsOptimized algorithms with overlap

4 Conclusion und perspectives

6 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

The Schwarz algorithm

Lu := ∂tu + a∂x u + (b · ∇)u − ν∆u + cu in Ω× (0,T )

ν > 0.

t

Ω1 Γ21

Ω2Γ12

8<:

Luk+11 = f in Ω1 × (0,T )

uk+11 (·, 0) = u0 in Ω1

B1uk+11 = B1uk

2 on Γ12 × (0,T )8<:

Luk+12 = f in Ω2 × (0,T )

uk+12 (·, 0) = u0 in Ω2

B2uk+12 = B2uk

1 on Γ21 × (0,T )

7 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

How to choose the transmission operators ?

Transmission conditions

B1uk+11 = B1uk

2 on Γ12 × (0,T ), B2uk+12 = B2uk

1 on Γ21 × (0,T )

8 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

How to choose the transmission operators ?

Transmission conditions

B1uk+11 = B1uk

2 on Γ12 × (0,T ), B2uk+12 = B2uk

1 on Γ21 × (0,T )

Classical Schwarz

Bj ≡ I AND overlap.

8 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

How to choose the transmission operators ?

Classical Schwarz

Bj ≡ I AND overlap.

1D Numerical experiment

a = 1, ν = 0.2,Ω = (0, 6),T = 2.5, L = 0.08.

u11(·,T ), u2

2(·,T )

0 1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5uu1

1

u22

PSfrag replacements

u31(·,T ), u4

2(·,T )

0 1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5uu1

3

u24

PSfrag replacements

u51(·,T ), u6

2(·,T )

0 1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5uu1

5

u26

PSfrag replacements

8 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

How to choose the transmission operators ?

Transmission conditions

B1uk+11 = B1uk

2 on Γ12 × (0,T ), B2uk+12 = B2uk

1 on Γ21 × (0,T )

Classical Schwarz

Bj ≡ I AND overlap.

Optimized Schwarz Waveform relaxation

Bj ≡ absorbing boundary operator+optimization WITH OR WITHOUToverlap

8 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

How to choose the transmission operators ?

Comparison

u11(·,T ), u2

2(·,T )

0 1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5uu1

1

u22

PSfrag replacements

u31(·,T ), u4

2(·,T )

0 1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5uu1

3

u24

PSfrag replacements

u51(·,T ), u6

2(·,T )

0 1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5uu1

5

u26

PSfrag replacements

u11(·,T ), u2

2(·,T )

0 1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5uu1

1

u22

PSfrag replacements

u31(·,T ), u4

2(·,T )

0 1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5uu1

3

u24

PSfrag replacements

u51(·,T ), u6

2(·,T )

0 1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5uu1

5

u26

PSfrag replacements

8 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

The optimal SWR algorithm

Ω1 = (−∞, L)× Rn, Ω2 = (0,∞)× Rn.

Bj ≡ ∂x + Sj (∂t , ∂y )

a > 0, Fourier transform t ↔ ω, y ↔ κ

S1(iω, iκ) =δ1/2 − a

2ν, S2(iω, iκ) =

δ1/2 + a

2ν.

δ(ω, k) = a2 + 4ν((i(ω + b · k) + ν|k|2 + c)

Convergence in 2 iterations (I if I subdomains).

Two options :

Use the optimal transmission condition (easier in 1D)

9 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

The optimal SWR algorithm

Ω1 = (−∞, L)× Rn, Ω2 = (0,∞)× Rn.

Bj ≡ ∂x + Sj (∂t , ∂y )

a > 0, Fourier transform t ↔ ω, y ↔ κ

S1(iω, iκ) =δ1/2 − a

2ν, S2(iω, iκ) =

δ1/2 + a

2ν.

δ(ω, k) = a2 + 4ν((i(ω + b · k) + ν|k|2 + c)

Convergence in 2 iterations (I if I subdomains).

Two options :

Use the optimal transmission condition (easier in 1D)

Approximate the optimal − > optimized transmission conditions

9 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Design of approximate SWR algorithms

boundary operators

δ(ω, k) := a2 + 4ν((i(ω + b · k) + ν|k|2 + c)

S1(iω, iκ) =δ1/2 − a

2ν, δ(ω, k) = a2 + 4ν((i(ω + b · k) + ν|k|2 + c)

S1(iω, iκ) =P − a

2ν,P(ω, k) = p + q(i(ω + b · k) + ν|k|2), (p,q) ∈ R2.

B1u := ∂x u − a− p

2νu + q(∂t + b · ∇u − ν∆y u)

10 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Well-posedness and convergence

Transmission conditions

B1u := ∂x u − a − p

2νu + q(∂t + b · ∇u − ν∆y u)

B2u := ∂x u − a + p

2νu − q(∂t + b · ∇u − ν∆y u)

11 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Well-posedness and convergence

Transmission conditions

B1u := ∂x u − a − p

2νu + q(∂t + b · ∇u − ν∆y u)

B2u := ∂x u − a + p

2νu − q(∂t + b · ∇u − ν∆y u)

Convergence factor

ρ(ω, k,P, L) =

(P − δ1/2

P + δ1/2

)2

e−2δ1/2L/ν

ek+2j (ω, 0, k) = ρ(ω, k,P, L)ek

j (ω, 0, k)

11 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Well-posedness and convergence

Transmission conditions

B1u := ∂x u − a − p

2νu + q(∂t + b · ∇u − ν∆y u)

B2u := ∂x u − a + p

2νu − q(∂t + b · ∇u − ν∆y u)

Convergence factor

ρ(ω, k,P, L) =

(P − δ1/2

P + δ1/2

)2

e−2δ1/2L/ν

ek+2j (ω, 0, k) = ρ(ω, k,P, L)ek

j (ω, 0, k)

theorem

For p, q > 0, p > a2

4ν q, the algorithm is well-posed in suited Sobolevspaces and converges with and without overlap.

11 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

One dimension : influence of the parameters

0 0.5 1 1.50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

−10

−9−9

−8

−8

−7

−7

−7

−7

−6

−6

−6

−6

−6

−5

−5

−5

−5

−5

−5

−4

−4

−4

−4

−3−2

PSfrag replacements

error at iteration 5

p

q

∆x

iterations

Error obtained running the algorithm with first order transmissionconditions for 5 steps and various choices of p and q.

p∗, q∗ : theoretical values ,p∗, q∗ : Taylor approximations.

12 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

One dimension : comparison

0 2 4 6 8 10

10−10

10−5

100

iteration

erro

r

2 SUBDOMAINS

CLASSICALOPTIMIZED ORDER 1

0 2 4 6 8 10

10−10

10−5

100

iteration

erro

r

4 SUBDOMAINS

0 2 4 6 8 10

10−10

10−5

100

iteration

erro

r

8 SUBDOMAINS

13 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Two dimensions : coupling different numerical methods

The heat bubble hitting an airfoil

−2 −1 0 1 2 3 4 5−2

−1

0

1

2

3

4

5

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Evolution of a heat bubble around an airfoil.

Coupling through Corba, “Common Object Request Broker Architecture”.

14 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Two dimensions : coupling different numerical methods

Programming

F.E in Ω1, F .D in Ω2,

Write the interface problem,

solve by Krylov,

Results for a time window=10 timesteps

the steady algorithm is :

do time iterations 1 :N

do Krylov iterations

with preconditioning

residual vectors =

size of interface

15 iterations ×10.

the unsteady algorithm is :

do Krylov iterations

do time iterations 1 :N

residual vectors =

size of interface x N

100 iterations.

P.d’Anfray, J. Ryan,L.H. M2AN 2002

15 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Robustness : rotating velocities

a(x , y) = 0.32π sin(4πx) sin(4πy),b(x , y) = 0.32π cos(4πy) cos(4πx).

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50−6

−5

−4

−3

−2

−1

0

1

2

3

4

Iterations

Er

Nu=0.1

Taylor Ordre0Ordre0 OptimiséTaylor Ordre1Ordre1 Optimisé

interface 0.3

0 10 20 30 40 50−6

−5

−4

−3

−2

−1

0

1

2

3

4

Iterations

Er

Nu=0.1

Taylor Ordre0Ordre0 OptimiséTaylor Ordre1Ordre1 Optimisé

interface 0.4

0 10 20 30 40 50−6

−5

−4

−3

−2

−1

0

1

2

3

4

Iterations

Er

Nu=0.1

Taylor Ordre0Ordre0 OptimiséTaylor Ordre1Ordre1 Optimisé

interface 0.5

16 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Optimization of the convergence factor

δ(z) = a2 + 4νc + 4νz , z = i(ω + b · k) + ν|k|2

ρ(z ,P, L) =

(P(z)− δ1/2(z)

P(z) + δ1/2(z)

)2

e−2δ1/2L

17 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Optimization of the convergence factor

δ(z) = a2 + 4νc + 4νz , z = i(ω + b · k) + ν|k|2

ρ(z ,P, L) =

(P(z)− δ1/2(z)

P(z) + δ1/2(z)

)2

e−2δ1/2L

Taylor expansion,P(z) =√δ(0) + 2νz/

√δ(0),

17 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Optimization of the convergence factor

δ(z) = a2 + 4νc + 4νz , z = i(ω + b · k) + ν|k|2

ρ(z ,P, L) =

(P(z)− δ1/2(z)

P(z) + δ1/2(z)

)2

e−2δ1/2L

Taylor expansion,P(z) =√δ(0) + 2νz/

√δ(0),

Best approximation

infP∈Pn

supz∈K|ρ(z ,P, L)|, K = (

π

T,π

∆t), kj ∈ (

π

Xj,π

∆xj)

17 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Optimization of the convergence factor

δ(z) = a2 + 4νc + 4νz , z = i(ω + b · k) + ν|k|2

ρ(z ,P, L) =

(P(z)− δ1/2(z)

P(z) + δ1/2(z)

)2

e−2δ1/2L

Taylor expansion,P(z) =√δ(0) + 2νz/

√δ(0),

Best approximation

infP∈Pn

supz∈K|ρ(z ,P, L)|, K = (

π

T,π

∆t), kj ∈ (

π

Xj,π

∆xj)

theorem

For any n, for L = 0 or sufficiently small, the problem has a uniquesolution characterized by an equioscillation property.

17 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Asymptotic results

Example : overlapping case, L ≈ C ∆x

Dirichlet transmission conditions : |ρ| ≈ 1− α∆x ,

Taylor approximation : |ρ| ≈ 1− β√

∆x ,

Optimization : p ≈ Cp∆x−15 , q ≈ Cq∆x

35 , |ρ| ≈ 1− O(∆x

15 ).

18 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Outline

1 Introduction

2 The SWR algorithm for advection diffusion equationDescriptionNumerical experimentsBack to the theoretical problem

3 The two-dimensional wave equationDirichlet transmission conditionsOptimized algorithms with overlap

4 Conclusion und perspectives

19 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Schwarz Waveform relaxation algorithm

Lu := utt − c2∆u, x ∈ Ω ⊂ Rm

t

Ω1 Γ21

Ω2Γ12

8<:

Luk+11 = f in Ω1 × (0,T )

uk+11 (·, 0) = u0 in Ω1

B1uk+11 (L, ·) = B1uk

2 (L, ·) in (0,T )8<:

Luk+12 = f in Ω2 × (0,T )

uk+12 (·, 0) = u0 in Ω2

B2uk+12 (0, ·) = B2uk

1 (0, ·) in (0,T )

20 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

A numerical experiment

Data

c = 1, T = 1,Ω = (0, 1)× (0, 1).

Two subdomains, overlapL = 0.08.

00.2

0.40.6

0.81

0

0.2

0.4

0.6

0.8

10

0.2

0.4

0.6

0.8

1

1.2

1.4

xy

u0

21 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

A numerical experiment

Data

c = 1, T = 1,Ω = (0, 1)× (0, 1).

Two subdomains, overlapL = 0.08.

00.2

0.40.6

0.81

0

0.2

0.4

0.6

0.8

10

0.2

0.4

0.6

0.8

1

1.2

1.4

xy

u0Convergence history : Dirichlet transmission conditions with overlap

0 2 4 6 8 10 12 14 16 18 2010−12

10−10

10−8

10−6

10−4

10−2

100

102

erro

r

n

Convergence after n > cTL = 12 iterations

21 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Other transmission conditions

General transmission operators

B1 =J∏

j=1

(∂x + αj∂t),B2 =J∏

j=1

(∂x − αj∂t).

22 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Other transmission conditions

General transmission operators

B1 =J∏

j=1

(∂x + αj∂t),B2 =J∏

j=1

(∂x − αj∂t).

Plane waves analysis

ek1 = ak

1 (ω, k)eσ(x−L), ek2 = ak

2 (ω, k)eσx .

σ =

8<:|ω|

c

q`ckω

´2 − 1, evanescent waves,

iωc

q1−

`ckω

´2, propagating waves.

|ρ| =

8>>>><>>>>:

e−L|ω|

c

r`ckω

´2−1, evanescent waves,

JY

j=1

˛˛˛αj −

q1−

`ckω

´2

αj +q

1−`

ckω

´2

˛˛˛ propagating waves.

22 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Plane wave analysis : continue

Convergence factor, propagating case

θ angle of incidence on the interface, sin θ = ckω .

|ρ| =J∏

j=1

∣∣∣∣∣αj −

√1−

(ckω

)2

αj +

√1−

(ckω

)2

∣∣∣∣∣ =J∏

j=1

∣∣∣∣αj − cos θ

αj + cos θ

∣∣∣∣.

23 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Plane wave analysis : continue

Convergence factor, propagating case

θ angle of incidence on the interface, sin θ = ckω .

|ρ| =J∏

j=1

∣∣∣∣∣αj −

√1−

(ckω

)2

αj +

√1−

(ckω

)2

∣∣∣∣∣ =J∏

j=1

∣∣∣∣αj − cos θ

αj + cos θ

∣∣∣∣.

Strategy 1 : orthogonal absorption α = 1

0 5 10 1510−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

iteration

Linf

erro

r at T

Classical SchwarzOrthogonal 1st OrderOrthogonal 2nd Order

PSfrag replacements

nerror

23 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Plane wave analysis : continue

Convergence factor, propagating case

θ angle of incidence on the interface, sin θ = ckω .

|ρ| =J∏

j=1

∣∣∣∣∣αj −

√1−

(ckω

)2

αj +√

1−(

ckω

)2

∣∣∣∣∣ =J∏

j=1

∣∣∣∣αj − cos θ

αj + cos θ

∣∣∣∣.

Strategy 2 : optimization

Given eps, find n and α(n) such that

23 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Plane wave analysis : continue

Convergence factor, propagating case

θ angle of incidence on the interface, sin θ = ckω .

|ρ| =J∏

j=1

∣∣∣∣∣αj −

√1−

(ckω

)2

αj +√

1−(

ckω

)2

∣∣∣∣∣ =J∏

j=1

∣∣∣∣αj − cos θ

αj + cos θ

∣∣∣∣.

Strategy 2 : optimization

Given eps, find n and α(n) such that

1 The overlap takes care of the wide angles θ ≥ θmax (n) = arccos( nLcT ),

23 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Plane wave analysis : continue

Convergence factor, propagating case

θ angle of incidence on the interface, sin θ = ckω .

|ρ| =J∏

j=1

∣∣∣∣∣αj −

√1−

(ckω

)2

αj +√

1−(

ckω

)2

∣∣∣∣∣ =J∏

j=1

∣∣∣∣αj − cos θ

αj + cos θ

∣∣∣∣.

Strategy 2 : optimization

Given eps, find n and α(n) such that

1 The overlap takes care of the wide angles θ ≥ θmax (n) = arccos( nLcT ),

2 the convergence rate ρ is optimized by ρ(θmax (n))n < eps.

23 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Comparison

Example : eps = 10−2

First order : n = 3.7459 ≈ 3− 4 ,θmax ≈ 73o .Second order : n = 1.9540 ≈ 2,θmax ≈ 81o .

Iteration 0 1 2 3 4 5

Dirichlet 0.7059 1.0555 0.8146 0.7340 0.7321 0.5760

Orthogonal O1 0.7059 0.5793 0.2035 0.0413 0.0061 0.0010

Optimized O1 0.7059 0.4403 0.1132 0.0216 0.0062 0.0018

Orthogonal O2 0.7059 0.5853 0.0701 0.0045 0.0003 0.0000

Optimized O2 0.7059 0.5847 0.0415 0.0099 0.0030 0.0004

24 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Theoretical results

Continuous level

Well-posedness of the best approximation problems (explicit),

Well-posedness of the subdomain problems (Kreiss theory),

Convergence of the algorithm (Fourier analysis, “a la”Engquist-Majda).

Discrete level

Discretization by finite volumes schemes,

Well-posedness of the discrete algorithm,1D case.

Convergence of the discrete algorithm (Fourier analysis + energyestimates) also nonconforming discretization in time. 1D case.

Error estimates for non conforming grids in time.

25 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Outline

1 Introduction

2 The SWR algorithm for advection diffusion equationDescriptionNumerical experimentsBack to the theoretical problem

3 The two-dimensional wave equationDirichlet transmission conditionsOptimized algorithms with overlap

4 Conclusion und perspectives

26 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Parabolic problems

1D theoretical analysis (M. Gander and L.H.)

2D with non constant velocity (V. Martin)

Shallow water (V. Martin)

Non conformal coupling (M.G., L.H., C. Japhet and M. Kern)

Hyperbolic problems

1D heterogeneous (M. Gander and L.H.) optimal SWR.

2D homogeneous overlapping SWR (M. Gander and L.H.)

1D Mesh refinement,

Nonoverlapping SWR in 2D (M. Gander and L.H.)

Nonlinear waves in 1D (L.H and J. Szeftel),

Mixed

coupling a large scale oceanic model and a coastal model,

coupling Euler and Navier-Stokes in an AMR frame.

coupling ocean and atmosphere models.27 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Collaborators

Mostly : M. Gander (Universite Geneve).

1D wave equation : F. Nataf (CNRS P6).

2D advection-diffusion : P. D’Anfray et J. Ryan (ONERA). V.Martin (Amiens).

Heterogeneous problems (application to oceanography) : C. Japhet(P13), M. Kern (INRIA), E. Blayo (Grenoble).

Schrodinger equation and non linear models : J. Szeftel.

Application to micromagnetism : S. Labbe (P11) et K.Santugini(Geneve)

http ://www.math.univ-paris13.fr/ halpern See MS M04 today at 4pm.

28 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Two applications

H2 Bubble – Shock Interaction

5

4

3

4

1 2

Uniformsupersonic flowEuler N2-O2

non-reactiveCoarse mesh

Non-interactingacoustic waves

Euler N2-O2 non-reactive

Coarse mesh

2

Shock- bubbleinteractionNavier-Stokes multi-

species reactiveFine mesh

3 Interacting acousticwavesEuler N2-O2 reactiveFine mesh

4 Vortex and flame front Navier-Stokes multi-

species reactiveVery fine mesh

Combustion

29 / 29

Introduction The SWR algorithm for advection diffusion equation The two-dimensional wave equation Conclusion und perspectives

Two applications

Ocean and ocean-atmosphere computations

29 / 29

Recommended