SAND CONTROL

Preview:

Citation preview

Gema Wahyudi Purnama

The Faculty of Mining and Petroleum EngineeringBandung Institute of Technology

2010

Sand Control Using a Combination of Chemicals (Resin)

for Gas Reservoir in Unconsolidated Formation

Outline

Introduction

Sanding Concept

Methodology

Results & Discussions

Conclusions

Introduction

Sand Control (Mechanics)

Mechanics sand control

tackle sand production

Unconsolidated Formation

Gas Reservoir

Production decrease

Broken down-hole & platforms equipment

Expensive treatment for sand production

Maintenance continue (mechanics)

What should we do?

Sand Production

Problems

Problems

We Should

Produce gas without sand

Sanding

Sanding Illustration

How?

Formation damage (Drilling, Completion, Stimulation)

Overburden Pressure Drop

(Pore Pressure Reduction)

Formation Damage

Pressure Drop

Pi Pwf

The Illustration of Well ProductionPi : Initial Pressure

Pwf : Flow Well Pressure

**

Solving

Sand Consolidation (Resin)

Sanding Concept

Sanding Concept

Stress

Strain

Core Sample

Compressive Stress Sand Consolidation Test

Brittle

(Sand Production)

Methodology

+ acid

Furfuryl alcohol

+ H20

Resin

O

H

HH

R

NH2

NH

NH

NH2

+ R N R

H

OH

H

H

H

Furan Resin Reaction

EpoxyHardener

Epoxy Resin

Epoxy Resin Reaction

Excellent acid and alkali resistance

Low viscosity

High penetration

Quicker curing speed

High resistance to “humidity”

R N R

H

OH

H

H

H+ New Resin Combination

60% of Concentration

Furan + Epoxy (Resin)

40% of Concentration

Advantages

Compressive Stress Equipment (CSE)

Temperature < 300˚C Vertical Pressure (Overburden) < 5000 psi

Horizontal Pressure < 3000 psi

CSE Design

KCL / N2

Flow Chart

Furan plus Epoxy

Sand Consolidation

(Core Injected by Resin )

Core samples

Compressive Stress Test

Using CSE

Gas Production Without Sand

No Core Sample Mesh Initial

FluidCementatio

n (%)Size (d :

L)k Initial kI

(mD)k After

Consolidation k AC(mD)

kI / k AC (%)

1 CS 1A

100

KCL 3%15

1" : 2" 247 168 68

2 CS 2A KCL 3%10

1" : 2" 322 222 69

3 CS 3A KCL 3%5

1" : 2" 417 313 75

4 CS 4A

80

KCL 3%15

1" : 2" 205 133 65

5 CS 5A KCL 3%10

1" : 2" 220 156 71

6 CS 6A KCL 3%5

1" : 2" 350 270 77

7 CS 7A60

KCL 3%15

1" : 2" 193 118 61

8 CS 8A KCL 3%10

1" : 2" 201 147 73

9 CS 9A KCL 3%5

1" : 2" 268 212 79

Results & Discussions

Core Synthetic B

No Core Sample Mesh Initial Fluid Cementatio

n (%)Size (d :

L)k Initial kI (mD)

1 CS 1B

100

KCL 3%15

1" : 2" 245

2 CS 2B KCL 3%10

1" : 2" 319

3 CS 3B KCL 3%5

1" : 2" 423

4 CS 4B

80

KCL 3%15

1" : 2" 210

5 CS 5B KCL 3%10

1" : 2" 229

6 CS 6B KCL 3%5

1" : 2" 348

7 CS 7B

60

KCL 3%15

1" : 2" 201

8 CS 8B KCL 3%10

1" : 2" 213

9 CS 9B KCL 3%5

1" : 2" 278

Core Synthetic A

No Core Sample Mesh Initial

FluidCementatio

n (%)Size (d :

L)k Initial kI

(mD)k After

Consolidation k AC(mD)

kI / k AC (%)

1 CS 1A

100

KCL 3%15

1" : 2" 247 168 68

2 CS 2A KCL 3%10

1" : 2" 322 222 69

3 CS 3A KCL 3%5

1" : 2" 417 313 75

4 CS 4A

80

KCL 3%15

1" : 2" 205 133 65

5 CS 5A KCL 3%10

1" : 2" 220 156 71

6 CS 6A KCL 3%5

1" : 2" 350 270 77

7 CS 7A60

KCL 3%15

1" : 2" 193 118 61

8 CS 8A KCL 3%10

1" : 2" 201 147 73

9 CS 9A KCL 3%5

1" : 2" 268 212 79

Results & Discussions

Core Synthetic A

1 2 3 4 5 6 7 8 90

50

100

150

200

250

300

350

400

450

Core Sample

k

Permeability Decrease

Core A Core B

Results & Discussions

-0.0

4999

9999

9999

998

2.35

9223

9273

2846

E-16

0.05

0000

0000

0000

02 0.1

0.15 0.

20.

25 0.3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Mesh 80

Strain

Stress σ

Brittle

Cementation 15% + Resin (Core A)

Cementation 15% without Resin (Core B)

Cementation 5% without Resin (Core B)

Cementation 5% + Resin (Core A)

Results & Discussions

-0.0

4999

9999

9999

997

2.91

4335

4396

4104

E-16

0.05

0000

0000

0000

03 0.1

0.15 0.

20.

25 0.3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Mesh 100

Strain

Stress σ

Brittle

Cementation 15% + Resin (Core A)

Cementation 15% without Resin (Core B)

Cementation 5% without Resin (Core B)

Cementation 5% + Resin (Core A)

Conclusions

The combination of epoxy and furan is new method to sand consolidation

Sand consolidation are increasing production without sand in unconsolidated gas reservoir

UCS (high pressure and high temperature) has developed to bring reservoir condition in the lab

Thank You

Furan Resin

O

O

CH3

CH3

+ acid*

*Sulphuric acid

* Butyl acetate

Furfuryl alcohol

OH S OH

O

O

+ H20

• There will be water as by product in the polymerization process of furfuryl alcohol.• It can be tackled by reacting the water with ester (butyl acetate)

Furan Resin (cont’d)

H

O

H O

O

CH3

CH3

+ OH

CH3

O

CH3

HO

+

water Butyl acetate Butanol

Boiling point 117.2oC

Acetic acid

Boiling point 118oC

Epoxy Resin Epoxy resin is a copolymer that consist of the resin and hardener Resin is made by reacting the bisphenol A and epichlorohydrin The hardener that usually used to make the epoxy resin is the

chemical component that have amine function group.

NH2

NH

NH

NH2

hardener

Epoxy resin (cont’d)

Reaction between the resin and hardenerO

H

HH

R

NH2

NH

NH

NH2

+ R N R

H

OH

H

H

H

Epoxy ResinHardener

Epoxy

Advantages of using Furan: Epoxy Resin

Excellent acid and alkali resistance Low viscosity High penetration Quicker curing speed High resistance to “kelembapan”