Rajai1 y b. 2 APPLICATIONS v Heat and mass transfer rates are enhanced by the oscillation of the...

Preview:

Citation preview

Rajai 1

y

b

Rajai 2

APPLICATIONAPPLICATIONSS

Heat and mass transfer rates are Heat and mass transfer rates are enhanced by the oscillation of the enhanced by the oscillation of the surrounding fluid. Useful in combustion, surrounding fluid. Useful in combustion, drying and the passage of sound waves drying and the passage of sound waves through particulate systems.through particulate systems.

Particle-laden flows, Brownian motion, Particle-laden flows, Brownian motion, suspension rheometry, colloidal suspension rheometry, colloidal suspension, and particle motion in suspension, and particle motion in filters.filters.

Rajai 3

MODES OF MODES OF HEAT HEAT TRANSFERTRANSFER

RADIATIONRADIATION

CONDUCTIONCONDUCTION CONVECTION (forced & CONVECTION (forced &

free)free)

Rajai 4

GOVERNING EQUATIONS

Conservation of momentumConservation of momentum

wFpw)w(t

w 2

)w(w)2/w(w)w( 2

)w()w(w2

where

Rajai 5

First law of thermodynamicsFirst law of thermodynamics

Conservation of massConservation of mass

0w

T)Tw(tT 2

Rajai 6

VECTOR RELATIONS

2

1 2 3 1

2 3

1 1 2

1 3

2 2 3

1 2

3 3

1

h h h q

h hh q q

h hh q q

h hh q

( ) ( ) ( )

ds h dq dqij i jji

2 2

1

3

1

3

h

xq

yq

zqi

i i i

2 2 2 2 ( ) ( ) ( )

333

222

111

uqh

1u

qh

1u

qh

1

)hhF(q

)hhF(q

)hhF(qhhh

1F 213

3312

2321

1321

332211

321

332211

321

hFhFhFqqq

uhuhuh

hhh

1F

Rajai 7

w

1231

2132 q

whh,q

whh

Define:

332211

321

332211

321

hwhwhwqqq

uhuhuh

hhh1

w

Rajai 8

q

h

h h q q

h

h h qh h

1

2

1 3 1 2

1

2 3 21 2( ) ( )

h ht q q h q q h

qh

h h qh

qh

h h qh

hq

h Fq

h F

1 22 1 3 1 2 3

1

2

1 3 13

2

1

2 3 23

31

2 22

1 1

( ) ( )

then,

Rajai 9

and,

h h hT

t q

T

q q

T

q

q

h h

h

T

q q

h h

h

T

q

1 2 32 1 1 2

1

2 3

1 1 2

1 3

2 2

( ) ( )

Rajai 10

a

g

x r sin cos y r sin sin z r cos

SPHERICAL COORDINATES

SCALE FACTORSh h r h rr 1 , , sin

r

T

Ts

U U to cos( )

Rajai 11

ln( / )r a

/ U ao2

a Uo/

( ) / ( )T T T Ts

t U t ao /

U U U S to / cos( )

VARIABLES

Rajai 12

Re /2aUo

Gr g T T as ( )( ) /2 3 2

Pe = Re Pr

S a Uo /

Pr /

T

Ts

DIMENSIONLESS NUMBERS

kinematic viscosity

thermal diffusivity

volumetric expansion coef.

frequency of oscillation

surface temperature

far-field temperature

Rajai 13

e32

2

2

2 0

sin cot

ee

e

2

2

2

2

2 2

2

t

Gr2Re

2

sin( ) ( cot )

Recot

sin

sin cos

ee

Pe2

2

2

2

2

2

t

sincot

USING THE SPHERICAL COORDINATE SYSTEM, THE EQUATIONS REDUCE TO:

(1)

(2)

(3)

Rajai 14

0 1 0, and at

e S t and e S t

ore

S t

as

2 2 2

22

2

sin cos( ) , sin cos cos( )

, sin cos( )

0 0, and as

BOUNDARY CONDITIONS

Rajai 15

• Equations are two dimensional, time-dependent, nonlinear, coupled, and of infinite domain.

• No explicit boundary conditions for vorticity on the surface.

• Difficulties with finite- differences such as, indeterminate forms, etc..

Rajai 16

Rajai 17

THE METHOD OF SOLUTION

e f t P dn n

zn

/ ( , ) ( )21

1

g t P zn nn

( , ) ( )1

1

z cos

h t P zn nn

( , ) ( )0

Rajai 18

HOW ?!

t

h

tPn

nn

0

ee

Pe2

2

2

2

2

2

t

sincot

eh

tP P dzi

i ji

2

1

1

0

Rajai 19

INTEGRALS NEEDED !!

P z P z dznk

mk( ) ( )( ) ( )

1

1

z P z P z dzn m2 1 1

1

1( ) ( )( ) ( )

P z P z P z dzn i j( ) ( )( ) ( ) ( )1 1

1

1

P z P z P z dzn i j( ) ( ) ( )( ) ( ) ( )1 1 2

1

1

and in general,

P z P z P z dzjm

jm

jm

1

1

2

2

3

3

1

1

( ) ( ) ( )

Rajai 20

P z P z P z dzj m j mj m j m

nj j n j j n

m m m m

n m mn m m

P z P z dz

jm

jm

jm

m m

n

jm

nm m

1

1

2

2

3

3

1 2

3

3 2 1

1

12 2 1 1

2 2 1 1

1 2 1 2

1 2 1 2

1 2

1 2 1

1

1 2 10 0 0

( ) ( ) ( )( )!( )!( )!( )!

( ) ( )

( )!( )!

( ) ( )

j j n j j1 2 1 2

where

After Mavromatis & Alassar:

Rajai 21

P z P z dzm m m m

j m j m

j m j m

Gk m m

k m m

Fm m k m m k m m

m mm

jm

jm

m

m m

k

k m m

1

1

2

2

2

2 1

2 1

1

1

2 1 2 1 2 1

1 1 2 2

1 1 2 2

2 1

2 1

3 22 1 2 1 2 1

2 1

1

21

2 2

3

2 2

1 1

1

2 2 21 1

3

( ) ( )( )

( ) ( )

( )!( )!

( )!( )!

( ( ) )( )!

( )!

, , ; ,

( )

2 1

21

m;

G kj j k j j k

m m m mm m

( ) ( )1 2 1

0 0 01 2 1 2 1 2

1 2 1 2j j k j j1 2 1 2

where

Rajai 22

Saalschutz’s Theorem

If c d a b n then

F a n b c dc a n c b n c c a b

c a c b c n c a b n

In thiscase

am m k

nk m m

bm m

c m m

dm m

1

1

1

2

2

21

1

3

2

3 2

1 2

1 2

1 2

1 2

1 2

,

, , ; , ;

:

Rajai 23

3-j SYMBOLS

Represent the probability amplitude that three angular momentum j1, j2, and j3 with projections m1, m2, and m3 are coupled to yield zero angular momentum. They are related to Clebsch-Gordan coefficients (C) by:

j j j

m m mCj m j

j j m j mj m1 2 3

1 2 3

2 12 1

1 3 3 1

3 1 1 2 2

3 3

( )

Rajai 24

Cabc b c

a b c a b

a c ca b b c

F a b c a c a b b c

a bc b

,

/

( )( )( )!

( )!( )!

( )!( )!( )( )!( )!( )!( )!

, , ; , ;

1

2 1

1 1 1

1 2

3 2

( )( )!( )!( )!

( )!

/

abca b c a b c a b c

a b c

1

1 2where

Clebsch-Gordan Coefficients

Rajai 25

2

22 5 21 2 1

fn f n n e gn

n n ( / ) ( ) /

eg

t

g gn n g

en

n hh

nn h

hS

n n nn

nn

nn

n

22

2

11

11

21

1

2 11

1

2 32

Re( )

( )( )

( )( )

Gr

2Re2

eh

t Pe

h hn n h Hn n n

n n2

2

2

21

( )

(1)

(2)

(3)

Rajai 26

S e fg

g gf

fn ijn

ij

j ijn

ji

ijiji

/ ( ) ( )2

1111

1

2

H en

ih

ff f

hn nj

ij

ii ij

ni

j

jiji

/ ( )2

0101

2 1

2 1

1

2

ijn n

j j

n n

n i j n i j

( )

( )

( )2 1

1

1 1 0 1 0 0 0

ijn n

j j j

n n i i

n i j n i j

( )

( )( )

( ) ( )2 1

1 2

1 1 1 1 2 0 0 0

2

ijn n

n i j

( )2 1

0 0 0

2

where,

Rajai 27

MODES BOUNDARY CONDITIONS

f tf

t and h tnn

n n( , ) ( , ) , ( , )0 0 0 0 0

f t e S t

f te S t as

n n

nn

( , ) cos( ) ,

( , )cos( )

/

/

3 21

3 21

3

2

g t and h t asn n( , ) , ( , ) 0 0

e g d S tnn n

( ) cos( )2

0

1

3

2

2

22 5 21 2 1

fn f n n e gn

n n ( / ) ( ) /

Rajai 28

NUMERICAL METHOD

eg

t

g gn n g

en

n hh

nn h

hS

n n nn

nn

nn

n

22

2

11

11

21

1

2 11

1

2 32

Re( )

( )( )

( )( )

Gr

2Re2

eh

t Pe

h hn n h Hn n n

n n2

2

2

21

( )

CRANK-NICOLSON F.D. SCHEME

Rajai 29

g

tq tn

n ( , )

q eg g

n n g Snn n

n n

22

2

21

Re

( ) *

1

12

tg t g t t

q t q t t

n n

n n

( , ) ( , )

( , ) ( , )

A t g t B t g t

C t g t D t t E tn n

n n n

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

Rajai 30

SPECIALIZED STEP-BY-STEP METHOD

xf

n fnn

n

( / )1 2

Qf

n fnn

n

( / )1 2

fQ x

nnn n2 1 2( / )

2

22 5 21 2 1

fn f n n e g rn

n n n ( / ) ( ) ( )/

Rajai 31

x

n x rnn n ( / )1 2

Q

n Q rnn n ( / )1 2

at 0x Qx Q

n nn n

0

x h t x t e e r z t dzn nn n x

n

h

( , ) ( , ) ( , )( / ) ( / )

1 2 1 2

e n h( / )1 2 1

x h t x t r t nn n n( , ) ( , ) ( ) ( , ) / ( / ) 1 1 2

Q t e tn n( , ) cos( )/ 3 3 21

Rajai 32

x h t x th n h n n

r t

h n h n nr h t

h n h nr h t

n n n

n

n

( , ) ( , )( / ) ( / ) /

( , )

( )

( / ) ( / ) /( , )

( / ) ( / )( , )

01

1 2

1 3

2 1 2 1 20

2 1

1 2

2

1 2

1

1 2

1

1 2

1

2 1 22

2 3 2

2 3 2

2 3 2

x h t x th n h n n

r t

h n h nr h t

h n h n nr h t

n n n

n

n

( , ) ( , )( / ) ( / ) /

( , )

( )

( / )

( )

( / )( , )

( / ) ( / ) /( , )

21

1 2

3 1

2 1 2 1 2

2 1

1 2

2 1

1 2

1

1 2

3

2 1 2

1

1 22

22

2 3

2

2

2

2

2 3

2

2

2

2 3

2

2

Rajai 33

PHYSICAL PARAMETERS

Nh

Pun

nn

( , ) (cos )

2 20 0

N N du u( ) ( , )

1

0

N N du u( ) ( , ) sin

1

2 0

Nusselt Number

Rajai 34

Nh

u ( )

2 0

N N x dxu u( ) ( )/

/

1 2

1 2

N n F n nh

n

n

h

un

n

n

n

( ) ( ) ( / , , / ; , ; )

( / )

!

2 1 3 2 3 2 2 2 1

2 1 2

23 2

2

0

2

22

0

Rajai 35

3.00 3.25 3.50 3.75 4.00

-0.10

0.00

0.10

0.20

R e = 50

205

St

2

Rajai 36

CD

U aDo

2 2

C C CD DF DP

C dDF 4

0 2

0Re( , ) sin

CU

p dDPo

1

0 22

0

( , ) sin

Drag Coefficient

Rajai 37

( )Re Re

sin

p Gr

0

02

4

C gDF 16

301Re

( , )

C gg Gr

DP

8

30 0

2

311

2Re( , ) ( , )

Re

p p p dGr

d*

Re( )

Resin

4

2

pGr

Pg

gnn

n

Nn

n*( , )

Re( cos )

Re(cos ) ( ) ( , ) ( , )

2

1

14

1 0 0

Pressure Coefficient

Rajai 38

Re Present

Wong

et al.

Sayegh&

Gauvin

Dennis&

Walker Whitaker

Dennis&

Walker

1 2.263 - 2.232 2.260 2.402 2.22

10 3.326 3.282 3.323 3.358 3.349 3.18

20 4.046 3.971 4.022 4.065 3.950 3.86

30 4.584 - 4.560 - 4.421 4.36

60 5.855 5.889 - - 5.511 5.65

100 7.153 7.351 - - 6.625 7.11

Re Gr Present Wong et al.

Percentage

Difference

60 720 5.943 6.021 1.312

60 14400 7.331 7.183 2.019

100 2000 7.190 7.509 4.437

VALIDATION

Rajai 39

SOME RESULTSR e G r G r / R e 2

N uN N f o r c e du u/ ( )

5 0 . 0 0 . 0 2 . 2 3 9 4 1 . 0 0 0 05 1 2 . 5 0 . 5 2 . 5 5 8 6 1 . 1 4 2 65 2 5 1 . 0 2 . 6 9 5 7 1 . 2 0 3 85 1 2 5 5 . 0 3 . 1 1 8 6 1 . 3 9 2 65 2 5 0 1 0 . 0 3 . 3 7 4 1 1 . 5 0 6 7

2 0 0 . 0 0 . 0 2 . 5 2 9 6 1 . 0 0 0 02 0 1 0 0 0 . 2 5 3 . 1 6 0 2 1 . 2 4 9 32 0 2 0 0 0 . 5 3 . 3 8 6 2 1 . 3 3 8 62 0 4 0 0 1 . 0 3 . 6 5 8 7 1 . 4 4 6 42 0 2 0 0 0 5 . 0 4 . 5 3 8 0 1 . 7 9 4 02 0 4 0 0 0 1 0 . 0 5 . 0 8 5 8 2 . 0 1 0 5

Rajai 40

0 30 60 90 120 150 180

1

2

3

4

5

=0.125

0.0 , 1 .0

0 .25

0.375

0.5

0.625

0.75

0.875

fo r th e c a se o f R e = 5 0 , S = , G r = 0 d u rin g o n e co m p le te c y c le .

Rajai 41

19.0 19.5 20.0

2

3

4

5

6

R e = 200

100

50

2010

fo r th e case o f S = , G r = 0 a t d iffe ren t R ey n o ld s n u m b ers d u rin g cy c le n o . 2 0 .

Rajai 42

0 30 60 90 120 150 180

2

3

4

5

0.125

= 0.0 , 1 .0

0.25

0.375

0.5

0.625

0.75

0.875

fo r th e ca se o f R e = 5 , S = , G r = 2 5 0 d u rin g o n e co m p le te cy c le .

Rajai 43

9.00 9.25 9.50 9.75 10.00

2

3

4

5

6

G r = 4000

fo r th e case o f S = , R e = 2 0 a t d iffe ren t G rash o f n u m b ers d u rin g o n e co m p le te o sc illa tio n .

2000

400

200

100

0

Rajai 44

-10 -8 -6 -4 -2

r T em p e ra tu re d is trib u tio n a lo n g a t = 0 .0 fo r th e ca se o f R e = 2 0 .

G r = 0.0 100 400

0.0

0.2

0.4

0.6

0.8

1.0

Rajai 45

10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

r

T em p era tu re d is trib u tio n a lo n g a t = 0 .0 fo r th e ca se o f R e = 2 0 .

G r = 0.0 100

400

Rajai 46

0.23000.0000 0.2500

Rajai 47

0.2625 0.2725

Rajai 48

0.2750 0.3125

Rajai 49

0.5000 0.5550 0.5650

Rajai 50

0.6000 0.7250 0.7500

Rajai 51

FUTURE RESEARCH

•Heat transfer from a sphere in a spinning infinite fluid.

•Heat transfer from other geometries such as oblate and prolate spheroids.

Rajai 52

SPHEROIDS

x c cosh sin cos y c cosh sin sin z c sinh cos

h h c sinh cos2 2

h c cosh sin

c'

A x is o f sy m m e try

Rajai 53

(sinh cos ) (cosh sin

) (cosh sin

)

Re cosh(cosh )

sin(sin )

2 2

2 1 1

t

cosh sin (sinh cos ) cosh (cosh

)

sin (sin

)

2 2 1

10

Stream Function

Vorticity

Rajai 54

(sinh cos )cosh sin

tanh cot

2 2

2

2

2

2

1

2

t

Pe

1

22 2cosh sin ( )F t as

0 0, and as

0 1, at o

Boundary Conditions

Energy

Rajai 55

A NOTE ON THE PROBLEM OF SPINNING STREAM

ee2

2

2

2

2

2

t

sin Recot

e as2 2 sin

y t P zn nk

n

( , ) ( )1

332211

321

332211

321

hwhwhwqqq

uhuhuh

hhh1

w

wFpw)w(tw 2

w

Rajai 56

Recommended