Quantum Teleportation · 2017. 4. 12. · Quantum Information Processing II Implementations:...

Preview:

Citation preview

||Quantum Information Processing II Implementations: Quantum Teleportation

“Deterministic quantum teleportation with feed-forward in a solid state system”Steffen, Lars, et al. Nature 500.7462 (2013): 319-322.

Christoph Dlapa, Martin Stadler, Martin Woschank

03.04.2017

Quantum Teleportation

||Quantum Information Processing II Implementations: Quantum Teleportation

Introduction and Repetition• Why quantum teleportation

• Algorithm and Gates

Implementation of the Circuit

Results and Discussion

03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 2

Outline

||Quantum Information Processing II Implementations: Quantum Teleportation 03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 3

Why quantum teleportation?

||Quantum Information Processing II Implementations: Quantum Teleportation 03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 4

Theory of Quantum Teleportation

sender

mediator

receiver

Transmission of

classical information

||Quantum Information Processing II Implementations: Quantum Teleportation 03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 5

Implementation

sender

mediator

receiver

||Quantum Information Processing II Implementations: Quantum Teleportation 03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 6

Multy-Qubit Cavity Bus (Transmission line)

Qubits coupled to/via oszillator• Similar to Cavidy-QED

• Large dipol, low dissipation

Strong coupling limit

Transition frequencies tunable through flux in qubit loop

Determine setup parameters through vacuum-Rabi-oszillations

Majer, J., et al. "Coupling superconducting qubits via a cavity bus." Nature 449.7161 (2007): 443-447.

||Quantum Information Processing II Implementations: Quantum Teleportation

Qubit-Qubit interaction through virtual photons

No direct interactions with the cavity

Quantum Non-Demolition (QND) Measurement of individual and joint qubit states

03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 7

Two-Qubit Cavity Bus

Majer, J., et al. "Coupling superconducting qubits via a cavity bus." Nature 449.7161 (2007): 443-447.

||Quantum Information Processing II Implementations: Quantum Teleportation 03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 8

Implementation of the Circuit

||Quantum Information Processing II Implementations: Quantum Teleportation

Implementation through the avoided crossing

03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 9

CPHASE-Gate

DiCarlo, L., et al. "Demonstration of two-qubit algorithms with a superconducting quantum processor." Nature 460.7252 (2009): 240-244.

||Quantum Information Processing II Implementations: Quantum Teleportation

Ideal protocol:• Entangled pair between A and B

• Two-qubit measurement to identify all four Bell states

• Feed-forward of the classical information

Problem: space-like realization between sender and receiver

03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 10

Protocol

||Quantum Information Processing II Implementations: Quantum Teleportation

Post-selected teleportation

Deterministic teleportation

Deterministic teleportation with feed-forward

03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 11

Applied Methods

||Quantum Information Processing II Implementations: Quantum Teleportation 03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 12

Implementation

||Quantum Information Processing II Implementations: Quantum Teleportation

Only need to distinguish one of the four Bell states

Through Josephson parametric amplifier measure whether Q1 is e.g. 00 (nooperations needed)

2nd Josephson parametric amplifier to read out Q3

To get process matrix χ00 four linearly indep input states will be used

(full process tomography)

03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 14

Post-Selected teleportation protocol

||Quantum Information Processing II Implementations: Quantum Teleportation

Relation between process and output-state fidelity:•

d… dimensionality of states

Any Bell-state can be put into computational basis by applying π pulses toQ1 or Q2

03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 16

Fidelities

||Quantum Information Processing II Implementations: Quantum Teleportation 03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 17

Results and Discussion

||Quantum Information Processing II Implementations: Quantum Teleportation

Direction of view for image a

Extended Data Figure 2 | Characterization of the joint readout of Q1 and Q2

Deterministic readout

03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 17

||Quantum Information Processing II Implementations: Quantum Teleportation

Extended Data Figure 1 | Pulse sequence of the teleportation protocol with feed-forward

Feedforward: ~500 ns !!!

Deterministic readout with feed-forward

03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 18

||Quantum Information Processing II Implementations: Quantum Teleportation 03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 20

Postselection process matrix

||Quantum Information Processing II Implementations: Quantum Teleportation 03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 21

Deterministic readout process matrix

||Quantum Information Processing II Implementations: Quantum Teleportation 03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 22

Deterministic readout with feed-forward process matrix

||Quantum Information Processing II Implementations: Quantum Teleportation 03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 23

Post-selection

Deterministic readout

Deterministic readout

With feed-forward

Process matrices

||Quantum Information Processing II Implementations: Quantum Teleportation

Extended Data Table 1

Success probabilities for the joint readout

Extended Data Table 2

Process fidelities of the feed-forward pulses

Error sources

03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 23

||Quantum Information Processing II Implementations: Quantum Teleportation

March 2014

Psi- created with F = 87 %

f = 1/250 s⁻¹

Average state fidelity

F = (77 ± 3) %

Readout fidelity

F = (96,3 ± 0,5) %

03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 25

Comparision to quantum teleportation in NV-centers

May 2013

Phi created with F = 92 %

f = 10⁴ s⁻¹

Average state fidelity

F = (68,8 ± 0,5) %

Readout fidelity

F = (89,1 ± 0,5) %

||Quantum Information Processing II Implementations: Quantum Teleportation 03.04.2017Christoph Dlapa, Martin Stadler, Martin Woschank 26

Thank you for your attention!

||Quantum Information Processing II Implementations: Quantum Teleportation

Extended Data Figure 3 | Characterization of the output states

Recommended