PROTEIN SYNTHESIS: TRANSLATION AND THE GENETIC CODE · 2010. 4. 20. · PROTEIN SYNTHESIS:...

Preview:

Citation preview

PROTEINSYNTHESIS:TRANSLATIONANDTHEGENETICCODEHLeeYuJsuicoJunsay

DepartmentofChemistry

SchoolofScienceandEngineering

AteneodeManilaUniversity1

NucleicAcidsareimportantfortheirrolesinthestorage,transferandexpressionofgeneCcinformaCon.

2

HOW DO YOU TRANSFER INFORMATION TO THE NEXT GENERATION?

HOW DO YOU DECODE THE INFORMATION AND MAINTAIN THE CELL’S STRUCTURE AND FUNCTION?

TransferandinterpretaConofgeneCcinformaConisdescribedinthecentraldogmaofmolecularbiology.

3

Transla<onisrequiredtoconvertthelanguageofnucleicacidstothelanguageofproteins.

TRANSLATIONPROCESS

4

TranslaConoccursintheribosomes.Ribosomesarecomposedoftwo(2)majorsubunits.EachsubunitisacomplexstructureofrRNAandseveralproteins.

5

TranslaConoccursintheribosomes.Ribosomesarecomposedoftwo(2)majorsubunits.EachsubunitisacomplexstructureofrRNAandseveralproteins.

6

RibosomesmovealongmRNAtemplatesdecipheringthecode,bringalongadaptormoleculescarryingaminoacidscapableofspecificbindingtomRNAtodecodeinformaCon,andcancatalyzetheformaConofthepepCdebond.

7

Proteinsynthesisbeginsattheaminoterminus.

8

Aminoacidsarecarriedbyt‐RNA

9

10

Aminoacyl‐tRNAsynthetasea[achestheaminoacidtothet‐RNA(veryspecific)

Mechanismandspecificity

  DeacylaseacCvity"edits"andhydrolyzesmisacylatedaminoacyl‐tRNAs

  DespitecommonfuncCon,thesynthetasesareadiversecollecConofenzymes

  Fourdifferentquaternarystructures:α,α2,α4andα2β2

  Subunitsfrom334tomorethan1000residues

AminoacidsarecarriedbytRNA.

EachuniqueaminoacidiscarriedbyaspecifictRNA

Specificityisdeterminedbya3‐nucleoCdesequenceinmRNAcalledcodonsandthecorrespondingcomplementarysequenceintRNAcalledan<codons

11

12

ThisspecificinteracConbetweenthecodonandacorrespondingtranslaContoanaminoacidisdeterminedbythegene<ccode.

  3nucleoCdes(codon)encodeanaminoacid

  Thecodeisnonoverlapping

  Thecodehasnopunctua6on

  Thecodeisdegenerateanduniversal

13

ThisspecificinteracConbetweenthecodonandacorrespondingtranslaContoanaminoacidisdeterminedbythegene<ccode.

GENOME – ENGLISH analogy Nitrogenous Bases (ATCG) Letters (a,s,f,t,r,e,…) Codons Words Gene Sentences Chromosome Chapters Genome Book

14

15

Problem1WhatisthepepCdeencodedbythefollowingmRNA?3’‐AGAAUAUCGAAGCAGGGGUAGUGA‐5’

16

Problem2ThefollowingistheparentDNAstrand.AssumingthatsplicingdoesnotoccuranymoreadertranscripCon,givethepepCdeitexpresses.

5’-CTATAGAATCCCCCAATGACCACGCAT-3’

17

TranslaConisstartedbyrecogniConofstartcodonofthesmallerribosomalunit,starttRNA,iniCaConfactors(IF)andGTP.

18

NOTE:Prokaryotestartisdifferentfromtheeukaryotestart.

  ProkaryoteSTART  fMet(formylmethionine)boundtoiniCatortRNA

 RecognizesAUGandsomeCmesGUG(buttheyalsocodeforMetandValrespecCvely)

  AUG(orGUG)onlypartoftheiniCaConsignal;precededbyapurine‐richsequence

ShineDalgarnosequence

19

NOTE:Prokaryotestartisdifferentfromtheeukaryotestart.

20

NOTE:Prokaryotestartisdifferentfromtheeukaryotestart.

  EukaryoteSTART AUGnearestthe5’endisusuallythestartsignal

21

WhentranslaConisiniCated,thelargeribosomalsubunitengagestocompletetheribosomalcatalyCcsites

22

WhentranslaConisiniCated,thelargeribosomalsubunitengagestocompletetheribosomalcatalyCcsites

23

WhentranslaConisiniCated,thelargeribosomalsubunitengagestocompletetheribosomalcatalyCcsites

24

AsecondAminoacyl‐tRNAmoleculecomesintotheA‐siteandpep<dyltransferasecreatesthepepCdebond

25

AsecondAminoacyl‐tRNAmoleculecomesintotheA‐siteandpep<dyltransferasecreatesthepepCdebond

26

AsecondAminoacyl‐tRNAmoleculecomesintotheA‐siteandpep<dyltransferasecreatesthepepCdebond

27

AsecondAminoacyl‐tRNAmoleculecomesintotheA‐siteandpep<dyltransferasecreatesthepepCdebond

28

29

30

31

mRNAistranslatedbylotsofribosomes,oneadertheother.

32

SomeanCbioCcsinhibittranslaContokilloffbacteria.

Streptomycesvenezuelaeproducespuromuycin

RECAP:1. TranslaConoccursattheribosomes(largesubunit

andsmallsubunit)2.  t‐RNAscarryspecificaminoacidstoribosomes.3.  SpecificinteracConsbetweenmRNAandtRNAallow

forthedecodingandtranslaConofnucleicacidtoproteins

4. RibosomescatalyzereacConofpepCdebondformaCon

POST‐TRANSLATIONALMODIFICATIONSANDPROCESSING

34

35

AdertranslaCon,proteinsfoldduetointermolecularinteracConswithwateranditself.

Chaperonesfacilitateandguideproteinfolding

36

Proteinsarealsobiologicallymodifiedbya[achingdifferentgroups

ProteolyCccleavage(Zymogens)

A[achmentofCarbohydrates

AddiConofprostheCcgroups(heme,etc.)

AminoacidmodificaCon

PROTEIN

37

ProteinsarethentransportedtodifferentpartsofthecellbymeansofproteintargeKng.

Proteinthatneedtopassthrumembraneshaveanextraaminoacidsequence(cealledsignalsequence)totellthecellthattheyneedtobetransported.

38

ProteinsalsoneedtobeconCnuouslydegradedforfuncConregulaConandremovalofdamagedormisfoldedproteins.Theprotein’s“kissofdeath”markerisUbiqui<n.

39

ProteinsalsoneedtobeconCnuouslydegradedforfuncConregulaConandremovalofdamagedormisfoldedproteins.Theprotein’s“kissofdeath”markerisUbiqui<n.

REGULATIONOFPROTEINSYNTHESISANDGENEEXPRESSION

40

41

Humanshaveabout20000–25000genes.SomeareneededatallCmes(cons<tu<vegenes).Someareneededonlyatspecificpointsinacell’slife(induciblegenesorrepressiblegenes)…

42

AgeneclustercontaininggenescodingfordifferentproteinsofrelatedfuncConsarecalledoperons.

43

TheRNAPolymerase‐DNAinteracConisCghtlyregulatedbyac<vatorsanddeac<vators.

44

TheRNAPolymerase‐DNAinteracConisCghtlyregulatedbyac<vatorsanddeac<vators.

45

RegulatoryproteinshavediscretebindingdomainsthatallowthemtorecognizeandbindtospecificDNA.TheyparCcipateviaH‐bondingtoDNAsequences.

46

About80%ofknownregulatoryproteinscanbeclassifiedas:1.Helix‐turn‐helixmo<f

47

About80%ofknownregulatoryproteinscanbeclassifiedas:1.Helix‐turn‐helixmoCf;2.Zincfingermo<f

48

About80%ofknownregulatoryproteinscanbeclassifiedas:1.Helix‐turn‐helixmoCf;2.Zincfingermo<f

49

About80%ofknownregulatoryproteinscanbeclassifiedas:1.Helix‐turn‐helixmoCf;2.ZincfingermoCf;3.LeucineZippermo<f

50

About80%ofknownregulatoryproteinscanbeclassifiedas:1.Helix‐turn‐helixmoCf;2.ZincfingermoCf;3.LeucineZippermo<f

51

GenesmayalsobesilencedadertranscripCon(Posttranscrip<onalgenesilencing,PTGS)byuseofRNA‐inducedsilencingcomplexes(RISCs)orriboswitches.

52

GenesmayalsobesilencedadertranscripCon(Posttranscrip<onalgenesilencing,PTGS)byuseofRNA‐inducedsilencingcomplexes(RISCs)orriboswitches.

53

GenesmayalsobesilencedadertranscripCon(Posttranscrip<onalgenesilencing,PTGS)byuseofRNA‐inducedsilencingcomplexes(RISCs)orriboswitches.

54

GenesmayalsobesilencedadertranscripCon(Posttranscrip<onalgenesilencing,PTGS)byuseofRNA‐inducedsilencingcomplexes(RISCs)orriboswitches.

Recommended