Protein-membrane association

Preview:

DESCRIPTION

Protein-membrane association. Theoretical model, Lekner summation. A.H. Juffer The University of Oulu Finland-Suomi. A.H.Juffer The University of Oulu Finland-Suomi. A.H.Juffer The University of Oulu Finland-Suomi. A.H.Juffer The University of Oulu Finland-Suomi. A.H.Juffer - PowerPoint PPT Presentation

Citation preview

Protein-membrane association.

Theoretical model, Lekner summation

A.H.Juffer

The University of Oulu

Finland-Suomi

A.H.Juffer

The University of Oulu

Finland-Suomi

A.H.Juffer

The University of Oulu

Finland-Suomi

A.H.Juffer

The University of Oulu

Finland-Suomi

A.H.Juffer

The University of Oulu

Finland-Suomi

A.H.Juffer

The University of Oulu

Finland-Suomi

A.H.Juffer

The University of Oulu

Finland-Suomi

A.H.Juffer

The University of Oulu

Finland-Suomi

A.H.Juffer

The University of Oulu

Finland-Suomi

A.H.Juffer

The University of Oulu

Finland-Suomi

A.H. Juffer

The University of Oulu

Finland-Suomi

Previous work

W. Xin and A.H. Juffer, Polarization and dehydration effects in protein-membrane association, To Be Submitted, 2004

W.Xin and A.H. Juffer, A BEM formulation of biomolecular interaction, To Be Submitted, 2004

C.M. Shepherd, H.J. Vogel and A.H. Juffer, Monte Carlo and molecular dynamics studies of peptide-bilayer binding, in: High Performance Computing Systems and Applications 2000 (Nikitas J. Dimpoulos and Kin F. Li, Eds.), Kluwer Academic Publishers (Dordrechts, The Netherlands), Chapter 29, 447-464, 2002.

C.M. Shepherd, K.A. Schaus, H.J. Vogel and A.H. Juffer, A Molecular Dynamics Study of Peptide-Bilayer Adsorption. Biophys. J. 80, 579-596, 2001.

A.H. Juffer, C.M. Shepherd and H.J. Vogel, Protein-membrane electrostatic interactions: Application of the Lekner summation technique. J. Chem. Phys. 114, 1892-1905, 2001.

A.H. Juffer, J. de Vlieg and P. Argos, Adsorption of Proteins onto Charged Surfaces: A Monte Carlo Approach with Explicit Ions. J. Comput. Chem., 17, 1783-1803, 1996.

Background

Interactions between lipid molecules and proteins crucial role in regulation biological function.

Membrane proteins: Integral proteins: e.g. photosynthetic reaction

center: Fully embedded into membrane

Peripheral proteins: e.g. phospholipase C-1: Only weakly bound to surface, separable by

change in pH or ionic strength

Background

Understanding the physics of protein-lipid interactions leads to deeper insight

GK

Equilibrium constant↕

Standard free energy

THERMODYNAMICS, NOT MECHANISM

Modeling protein-membrane binding

lipid bilayers sandostatin

Free energy of binding

lipimmconqEelcnp GGGGGGG

Non-polar hydrophobic effect (expulsion of

non-polar compounds from water

Direct electrostatic interactionbetween basic residues and

anionic lipids.

ConformationalChange.

Difference in dielectricproperties between water and hydrocarbon region

(mutual polarization effects).

Changes in motionaldegrees of freedom.

Changes inside membrane.

Coulomb interaction

rij

++

ji

ji

q

rrr

04

3

04ji

jiji

q

rr

rrrE

jiij

ij

jiijel

r

r

qqrU

rr

04

Long-ranged: beyond dimension of protein

How to calculate it?

Assume periodicity along x, y-direction

q

Image

Ly

Lx

yxLL

q

Ly

The Lekner Summation

v vrr

vrrF 3

04 ji

jijiij qq

Conditionally

converging sum

ddqL

qq

L

y

L

z

L

qq

L

zk

L

yfKn

L

x

L

qqU

ji

x

ji

yyx

ji

n

k

k xyxx

jiij

for 2

2ln4

2cos2coshln4

22cos

00

0

1

2

122

20

0

Fast absolutelyconverging sum

ijii UF

Four surface charges: potential

Four surface charges: field

• Ions next to flat surface carrying a negative surface charge density.

• Accumulation of Na+.• Depletion of Cl-.

• Electric moment pointing towards flat surface.

• Symmetry along x- and y-axis but not along z-axis.

z-axis

Ion densities near POPC

Ion densities near POPG

Free energy of adsorption

00 )()('

'zz

z

zUdz

z

zAdzA

)(')()('

)('

1)('zF

z

zU

z

zQ

zQkT

z

zA

kT

zUddddCzQ

,,,,exp)sin()('

rr

Change in free energy in moving protein from bulk solution at z=- toA point z=z0 near the surface:

)('ln)(' zQkTzA

Thermodynamic integration

Electrostatic force acting on Sandostatin

POPC

Force acting on Sandostatin, MD

POPC

Movie

The first 2 ns of a 6 ns MD simulation.Biophys. J. 80, 579-596, 2001.

Electrostatic force acting on Sandostatin

POPG

Two solutes A, B immersed in polarizable solvent S

q

Q

Solvent

A

B

lk lk

Bl

Ak

S

jj

AjA

jBj

SB

ii

BiB

iAi

SAel

qq

n

nSBAW

,0

21

0

21

0

4

1

11

11,,

rr

int

approximation

cavity

dW ED2

1

Two polarisable objects

Future improvements

Inclusion of internal (`essential’) degrees of freedom.

Dynamical simulations Stochastic modeling of proteins Effects of pH.

Acknowledgements

Weidong Xin Craig Shepherd

Heritage Foundation

Human frontiers MRC Biocenter Academy of

Finland.

Recommended