Protein Engineering

Preview:

DESCRIPTION

i have prepared it for my class presentation. I hope you guies may be in need of it.

Citation preview

Prepared by :

Danda Pani ChapagainPramod NiraulaGopal KarkiMukesh MaharjanUjjwal BhushalPrem BhatBijaya Sharma

Submitted to:

Dr. Pramod Aryal(lecturer of Animal Biotechnology,SANN College, Gaihridhara)

Administrator
Sticky Note
Mukesh Maharjan & Danda Pani Chapagain
Administrator
Sticky Note
MigrationConfirmed set by Administrator
Administrator
Sticky Note
Marked set by Administrator

The design and construction of new proteins or enzymes with novel or desired functionsby modifying amino acid sequences by using recombinant deoxyribonucleic acidtechnology(RDT).

Protein engineering is the application of science, mathematics, and economics to the process of developing useful or valuable proteins. It is a young discipline, with much research currently taking place into the understanding of protein folding and protein recognition for protein design principles.

The major assumptions of the method are:

(1) mutation does not significantly change thestructure of the folded state

(2) the target groups do not make newinteractions with new partners during thecourse of reaction energy

DESIGNING  BETTER PROTEIN

Thermodynamics

Folding 

Biochemical 

Structure

Methods of protein engineering  :

Site Directed Mutagenesis (rational design)

Random Mutagenesis (direct  evolution)

DNA  Shuffling

Fusion proteins

Glycosylation

PEGylation

Detailed knowledge of the structure and function of the protein is used to make desired changes. 

This has the advantage of being generally inexpensive and easy, since site‐directed mutagenesis techniques are well‐developed. 

For the rational design we should have detailed knowledge of gene sequence and protein structure .

However, there is a major drawback in that detailed structural knowledge of a protein is often unavailable, and even when it is available, it can be extremely difficult to predict the effects of various mutations.

• Computational protein design algorithms seek to identify amino acid sequences that have low energies for target structures.

1)  To alter a single amino acid residue by 

mutating the codon that encodes for that amino acid.

ATG GCC GGA GAC GAG ACT ACT AAA

ATG GCC GGA GTC GAG ACT ACT AAA

translates to…..

Met ‐ Ala ‐ Gly ‐ Asp ‐ Glu ‐ Thr ‐ Thr ‐Lys

Met ‐ Ala ‐ Gly ‐ Val ‐ Glu ‐ Thr ‐ Thr ‐Lys

Application

Medicine

Example:

• Effectiveness of Ribonuclease (RNase) used in anti tumor therapy can be improved by this site directed mutagenesis.

Engineered Dimeric human pancreatic RNase

Leu

Cys

Lys+

Cys

Leu

cys

Lys+

Cys

Gln

Arg

Asn

Arg

Dimerization

After Protein EngineeringBy site directed mutagenesis

Native Monomeric Human Pancreatic RNase

2) To create a new restriction site for manipulation of DNA withoutintroducing an amino acid change.

AAT TCG CAT TCT ATG GGT ACC Asn‐ Ser ‐ His ‐ Ser ‐Met ‐ Gly ‐Thr

NcoI

AAT TCG CAT T(CC ATG G)GT ACCAsn‐ Ser ‐ His ‐ Ser ‐Met ‐ Gly –Thr

New restriction site, no change in amino acid sequence.  TCT = Ser, TCC = Ser

• Possible without knowledge about sequence/structure

• Generation of mutant libraries

• efficient screening

Random mutagenesis is applied

selection regime is used (for protein)

variants 

Further rounds of mutation and selection are then applied

produces superior results to rational design

Error prone PCR:

• based on the principle that Taq polymerase is capable of annealing incompatible base‐pairs to each other during amplification under imperfect PCR conditions.

• Error prone PCR:

• 7 mMMgCl2• add H2O to 100 μl• 1 μl Taq• 2 μM Primer as• 2 μM Primer s• 100 ng Template• 0,2 mM dATP• 0,2 mM dGTP• 1 mM dCTP• 1 mM dTTP• 0,5 mMMnCl2• 20 mM Tris (pH 8.4)• 50 mM KCl

4°C72°C 10 min72°C 3 min58°C 45 s 30 x94°C95°C 3 min

Error prone PCR:

restriction

To mimic the natural design process and speed it up bydirected selection in vitro toward a simple specific goal.For example: protein engineering

In vitro homologous recombination of pools of selectedgenes by random fragmentation and polymerase chainreaction reassembly

What do we need?

• applied to sequences > 1Kb

• Presence of homologous regions separating regions of Diversity

• Scaffold‐like protein structures may be particularly Suitable for shuffling

Phylogenetic tree of 4 cephalosporinase genes

% sequencesimilarity

Chimeric DNA sequences 

Alpha interferons (IFN‐s) are members of the diverse 

helical‐bundle superfamily of cytokine genes. 

• The human IFN‐s (Hu‐IFN‐s) are encoded by a family of over 20 tandemly duplicated nonallelic genes that share 85–98% sequence identity at the amino acid level. 

• These proteins have potent antiviral and antiproliferative activities that have clinical utility as anticancer and antiviral therapeutics. Although the utility of chimeric IFNs derived from this gene family has been recognized, only a small fraction of the 1026 possible chimeras have been explored either in natural human evolution or by the methods of modern molecular biology; and only one natural IFN‐ subtype, Hu‐IFN‐2, has been used in clinical studies. 

• The most active engineered IFN‐, IFN alfacon‐1, is a consensus of 13 wild‐type Hu‐IFN‐ genes that is currently used in hepatitis C therapy.

• A novel protein engineered by fusing the protein coding sequence of one gene to the protein coding sequence of a different gene.

Can be used to direct toxins to a target site.

(IL‐2  +  Diptheria toxin)

aa 2nd ‐133 human IL‐2   + 1st ‐389 aa of diptheria toxintargets IL‐2 receptors on CTCLs to kill them

Denileukin diftitox (Ontak) ‐ FDA approved for cancer30% patients have 50% reduction in tumor burden

CTCL = cutaneous T‐cell lymphoma

Ontak      IL‐2 + diptheria toxin fusion protein

Ontak binds to surface of lymphoma cells via IL‐2 

receptor

Once internalized, diptheria toxin kills cell.

•Add/remove glycosylation sites

•Change biochemical feature/activity of the protein

•Improve stability

Altering Glycosylation Sites :

• Use site‐directed mutagenesis to introduce new glycosylation sites.

• Erythropoietin as an exampledirect relationship between carbohydrate content (sialic acid) and its serum half life and biological  activity in vivo

Inverse relationship with receptor binding (i.e., more glycosylation means poorer binding)

• Hypothesis was:the more glycosylation ‐‐> longer half life

‐‐> more activity‐‐> reduced binding affinity

• Hyperglycosylated EPO (Aranesp)

• In vivono loss of drug functionincreased serum half‐life (3‐fold longer)reduced frequency of administration

• FDA approved 1/30/03 for anemia

• Similarly, PEGylation (monomethoxypolyethylene glycol ) is also in use to improve the protein stability and activity.

• Protein drugs have:

relatively short half‐lives

wide tissue distribution

potential for immunogenicity 

• It is used to design the novel protein that has the enhanced activity.

• Protein engineering is the combination of science, mathematics and management.

• It can be applied in the fields like‐medicine, industries,agriculture etc…

• Since it is very tough task, many researches is still done.

• Glick.B,R, Pasternark,j,j, Molecular Biotechnology, Principles in Applications ofRecombinant DNA,IIIrd edition ,ASM press washington D.C.

• Fresht,A. Structure and Mechanism in protein science,w.h. freeman and company,New York.

• Chawala,H.S. Introduction to Plant Biotechnology, IInd edition, Oxford and IBHpublishing Co.Pvt. Ltd.,New Dehli.

• http://www.w3.org

• http://nar.oxfordjournals.org

• http://ncbi.nlm.nih.gov/pubmed

• http://www.upei.ca

Recommended