Propulsion EAV - Purdue University · EAV Falcon XX Parth Trivedi . Propulsion Stage Disposable EAV...

Preview:

Citation preview

Propulsion Stage

EAV

Falcon XX

Parth Trivedi

Propulsion Stage

Disposable EAV

Launch

Parth Trivedi

Crew A Crew 1 Crew 1-2 Crew 1-3 Crew 1-4 Crew 1-5 Crew 1-6 Crew 1-7 DRA 5 *

Total cost (2004 millions) 155625 158544 206509 257002 303206.4 346006 385080.8 421338.4 75000

Days 547 5479 5479 5479 5479 5479 5479 5479 550

Days * People 4000 43800 81760 113880 140160 160600 175200 183960 3300

Millions/ Person Day 38.91 3.62 2.53 2.26 2.16 2.15 2.20 2.29 22.73

*DRA 5 cost is not officially posted, not confident in DRA 5 cost

Falcon 9 Heavy › To carry crew capsule and propellant

required to rendezvous with transit vehicle

Image Credit: http://www.spacex.com/assets/img/20110405-falcon-heavy.jpg

Payload

Mass [t]

Cost Per

Launch

Cost per kg of

payload

53.0 $125 Million $2358.49

Falcon XX › To carry Cargo Vehicles into LEO

› To carry crew vehicle components to be

assembled in LEO

Image Credit: http://www.spacex.com/assets/img/20110405-falcon-XX.jpg

Payload

Mass [t]

Cost Per

Launch

Cost per kg of

payload

150.0 $300 Million $2000

Circular Spiral Out › Constant thrust

Parameter Value

TOF [days] 350

Mo[t]* 113

Mp[t] 15

Mf[t] 98

*Mo – mass at LEO (350 km)

Various departure dates starting in 2022 › Multiple cargo missions per departure date

› 21 Total Cargo Missions

Parameter Value

TOF [days] 316

Mo[t]* 98

Mp[t] 12

Mf[t]t 87

*Mo – Earth Departure Mass t Mf – Mars Arrival Mass

Assemble Crew Transit Vehicle in LEO

Crew A: 2 Launches to assemble spacecraft

+ 1Crew Rendezvous

=3 total Launches

Crew 1-7: 1 Launches to assemble spacecraft

+ 1Crew Rendezvous

=2 total Launches

Crew Transit Vehicle +

EP Tug Mass

Mo[t]* 196.0

Image by Sam Rieger

Elliptical Spiral

Electric Propulsion

Parameter Value

TOF [days] 669

Mo[t]* 196

Mp[t] 37.3

Mf[t] 158.7

*Mo – mass at LEO (350 km)

Samantha Rieger

Parameter Value

Power 900 kM

Thrust 35 N

Thrust for

Decay orbit 1.78 N

Isp 4000 s

Crew rendezvous when

Earth Escape Tug (EET)

reaches periapsis of

highest energy ellipse

Launch vehicle capsule

will fall back to Earth to

be reused

Once Crew departs, EET

will perform aerobraking

maneuvers back into a

circular orbit

Image by Peter Barchert

Impulsive ΔV at

perigee of ellipse

will place crew in

transfer arc to

Mars

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x 108

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5x 10

8

x direction (km)

y d

irection (

km

)

Interplanetary leg

Earth orbit

Mars orbit

Transfer

Departure

Arrival

Image by Peter Barchert

Parameter Value

Impulsive ΔV 0.65 km/s

Plane Change ΔV 24.3 m/s

Correction Maneuvers ΔV

100 m/s

Total ΔV 0.77 km/s

Slow down in the atmosphere and go through a series of

maneuvers to end in a circular orbit

-2 -1 0 1 2

x 104

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5x 10

4 Hyperbolic Martian Approach

x-distance (km)

y-d

ista

nce (

km

)

Mars

Martian Atmosphere

Synchronous Orbit

Approach

Atmospheric Entry

Mars Sphere of Influence

-6 -4 -2 0 2 4 6

x 105

-6

-4

-2

0

2

4

6x 10

5 Hyperbolic Martian Approach

x-distance (km)

y-d

ista

nce (

km

)

Mars

Martian Atmosphere

Synchronous Orbit

Approach

Atmospheric Entry

Mars Sphere of Influence

Parameter Value

V∞/♂ 4.04 km/s

V at atmosphere 6.36 km/s

Flight Path Angle -9.6˚

V- [km/s] Vcircular [km/s] ΔV [km/s] Mp [t]

3.52 3.45 0.091 2.36e-3

16

V- [km/s] Vcircular [km/s] ΔV [km/s] Mp [t]

3.52 3.45 0.088 2.26e-3

Drawing by Monica Pires

Atmospheric

Entry

Atmospheric Exit

Raise

Maneuver

Locations

17

Elliptical Spiral

Electric Propulsion

Parameter Value

TOF [days] 89.48

Mo[t]* 29.5

Mp[t] 4.05

Mf[t] 25.45

*Mo – mass at LEO (350 km)

Samantha Rieger

Parameter Value

Power 850 kW

Thrust 25 N

Isp 4900 s

Inputs/Assumptions

› a = 2.8gMars

› m = 105 t

› Isp = 375 s

› Constant mass

› Drag of atmosphere

Results

› ΔV = 3.88 km/s

› TOF = 404.1 s

1 2 3 4 5 6

x 105

0

0.5

1

1.5

2x 10

5

Rosalie Geeck and Monica Pires

Trajectory of Launch from Mars

X-position (m)

Y-p

ositio

n (

m)

Final Altitude

Final Trajectory

0 100 200 300 400

-20

0

20

40

60

Rosalie Geeck and Monica Pires

Steering Angle, , vs Time

time (s)

Ste

ering A

ngle

,

(deg)

0 1000 2000 30000

200

400

600

Rosalie Geeck and Monica Pires

Y-Velocity vs X-Velocity

Velocity x-component (m/s)

Velo

city y

-com

ponent

(m/s

)

0 100 200 300 4000

1000

2000

3000

Rosalie Geeck and Monica Pires

Velocity Components vs Time

time (s)

Velo

city (

m/s

)

Velocity: x-direction

Velocity: y-direction

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x 108

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x 108 Samantha Rieger

e axis (km)

p a

xis

(km

)

Earth

Mars

Transfer Orbit

Stay on Mars TOF Necessary transfer ΔV

Actual impulsive ΔV (reduces due to tug)

547 days 180 days 3.43 km/s 1.88 km/s

& Rosie Geeck

Circularizing Earth EP tug maneuvers (low

thrust or impulsive)

Find minimum ΔV to orient flight path

angle at Mars atmospheric entry

Finalize Crew and Cargo Missions

Finalize Earth Elliptical spiral for Crews

1-7

Mission Number of Missions Departure Date end spiral Mars Arival Date tof spiral tof transfer tof

com 1 7/1/2022 7/1/2022 10/3/2023 100.50 458.00 558.50

fuel 3 7/27/2023 7/19/2024 6/7/2025 357.30 323.30 680.60

A1 2 4/24/2021 5/30/2020 5/5/2023 339.40 400.90 740.30

1 1 7/21/2023 7/27/2024 7/31/2025 372.80 368.00 740.80

2 2 2/28/2025 9/3/2026 7/13/2027 340.30 313.10 653.40

3 2 10/30/2027 10/13/2028 8/2/2029 348.80 293.30 642.10

4 2 11/19/2029 12/4/2030 9/2/2031 379.60 272.40 652.00

5 2 4/6/2034 4/11/2035 12/23/2035 369.50 256.50 626.00

6 2 3/25/2034 4/25/2035 4/21/2036 395.40 362.40 757.80

7 2 6/26/2036 5/31/2037 3/23/2038 338.90 295.50 634.40

8 2 11/3/2038 7/28/2039 4/29/2040 267.80 275.60 543.40

21 350.98 316.10 667.08

Mo mf1 Mp1 Mp2 Mp Ma [t] Vinf filename

33432.80 29277.00 4155.80 2208.50 6364.30 27068.50 2.91 cargocom

113140.00 98366.30 14773.70 13366.30 28140.00 85000.00 3.70 cargof

126488.50 109910.70 16577.80 12910.70 29488.50 97000.00 3.61 cargoa1b

117894.50 102478.80 15415.70 12478.80 27894.50 90000.00 3.32 cargo1c

107923.40 93853.50 14069.90 11853.50 25923.40 82000.00 3.13 cargo2b

110522.70 96102.20 14420.50 11102.20 25522.70 85000.00 3.58 cargo3b

119958.90 104264.30 15694.60 11264.30 26958.90 93000.00 3.54 cargo4b

116882.60 101603.60 15279.00 10603.60 25882.60 91000.00 3.13 cargo5b

124791.40 108443.30 16348.10 12443.30 28791.40 96000.00 2.41 cargo6b

107499.00 93486.30 14012.70 11486.30 25499.00 82000.00 3.15 cargo7b

85627.00 74554.50 11072.50 10554.50 21627.00 64000.00 3.64 cargo8b

113072.80 98306.35 14766.45 11806.35 26572.80 86500.00 3.32

113.07 98.31 14.77 11.81 26.57 86.50

Mission Earth Departure Mars Arrival

Date V∞ [km/s] ΔV [km/s] Date V∞ [km/s] Vp [km/s]

A/1 12/06/2026 4.86 1.190 06/04/2027 5.83 7.625

2 01/14/2029 4.80 1.146 07/13/2029 5.34 7.257

3 03/06/2031 4.80 1.146 08/25/2031 4.52 6.677

4 05/05/2033 3.50 0.683 11/01/2033 3.46 6.011

5 07/09/2035 3.47 0.674 01/05/2036 2.73 5.622

6 09/11/2037 4.87 1.174 03/10/2038 3.31 5.925

7 10/20/2039 5.00 1.228 04/15/2040 4.93 6.961

VASIMR Engine

Engine Parameters

Power Requirement , [kw] 850

Isp , [s] 4900

Engine Mass , [t] 4.25

Reactor Mass , [t] 5.95

Cargo

Comm.

Cargo

(Fuel)

Cargo

A1

Cargo

1

Cargo

2

Cargo

3

Cargo

4

Cargo

5

Cargo

6

Cargo

7

Cargo

8

Payload

mass , [t] 12.57 70.50 82.50 75.50 67.50 70.50 78.50 76.50 81.50 49.50 72.00

Propellant

mass , [t] 6.36 28.14 29.49 27.89 25.92 25.52 26.96 25.88 28.79 25.50 21.63

Tank mass

, [t] 0.64 2.81 2.95 2.79 2.59 2.55 2.70 2.59 2.88 2.55 2.16

Reactor

mass , [t] 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95

Engine

mass , [t] 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25

Propulsion

total

system

mass , [t]

17.20 41.15 42.64 40.88 38.72 38.27 39.85 38.67 41.87 38.25 33.99

Total

vehicle

mass , [t]

(at

departure)

90.47 111.65 125.14 116.38 106.22 108.77 118.35 115.17 123.37 87.75 105.99

Electric Propulsion Tug

Power

Requirement ,

[kw]

900

Isp , [s] 4000

Thrust , [N] 32.1

Propellant Mass ,

[t]

64.6

Inert Mass , [t] 32.5

Total System

Mass , [t]

97.1

Chemical Propulsion (impulsive burn)

Propellant LOX/CH4 (4:1)

Delta V , [km/s] 0.77

Isp , [s] 400

Propellant Mass ,

[t]

27

Inert Mass 4.6

Total System

mass , [t]

31.6

Illustration by Shourya Jain

LH2 Required: 1.5 T

Propellant + tank Req:

95 T

Launch

at Mars

(2 stage)

Impulsive

burn at LMO

(2 stage)

Payload Mass

Capsule

Required Propellant +

Tank Mass at LMO

5 T

5 T

0 T

62 T

Burn Time (each

stage)

150 sec 500 secs

Propellant Mass 10 T 81.5 T

Inert Mass 2 T 13 T

Total Mass 17 T 156 T

Electric Propulsion Tug

Power

Requirement ,

[kw]

900

Isp , [s] 4000

Thrust , [N] 32.1

Propellant Mass ,

[t]

64.6

Inert Mass , [t] 32.5

Total System

Mass , [t]

97.1

Chemical Propulsion (impulsive burn)

Propellant LOX/CH4 (4:1)

Delta V , [km/s] 0.77

Isp , [s] 400

Propellant Mass ,

[t]

22.6

Inert Mass 3.68

Total System

mass , [t]

26.28

N2O4/Aerozine 50 bipropellant engine

› Total thrust: 261 kN

Four engines at 65 kn

› Specific Impulse 331 s

System

(Per Engine) Mass Volume (m3)

Fuel 341 kg 0.28

Oxidizer 764 kg 0.63

Pressurant 3.77 kg 0.04

Dry Engine 500 kg 0.05

Totals 6.43 t 4

I = 5.2 e6 N-s

tb= 10 hr = 36,000 s

F = 144 N

mp = 2.42 t

Fper = 18 N

mo = 1.71 kg

Dc = 1.1cm

Dc = 0.25 cm Catalyst Bed

Images by Thomas Mifsud

De = 1.14 cm

System Mass Volume (m3)

AGpropellant 302 kg 0.30

AGpressurant 1.77 kg 0.048

A/Cpropellant 53 kg 0.052

A/Cpressurant 0.31 kg 0.0084

Totals (est)* 4.96 t 4.89

AG Total @ 16 Thrusters (I = 5.2e6 N-s)

AC Total @ 30 Thrusters (I = 1.2e4 N-s) *Mass Totals = 46 Total Thrusters + Propellant + Total Pressurants

3CO2+6H2=>CH4+2CO+4H2O

2H2O=>2H2+O2

Mass Leverage =

Electrolysis can be used for Human

Factors

By Richard O’Connor

Ballute material is

Kapton

Filled with Helium Gas

to Mars surface

Pressure for landing

and 100 Pa for

Aerocapture

Tethers are PBO

Low Heating Rates with Ballutes

Non-Ablators Carbon phenolic

If a Ballute is usable than this Heat shield

will work

TPS

Mass 3.0 t

Use of Atmosphere to

change the Orbit

Initial Conditions

Velocity 10.94 km/s

Altitude 256000 km

After 20 days of

Aerobraking

Finals Conditions

Energy Dissipation 297 MJ

Heat Shield Mass 4.01 t

By Mounia Belmouss

Using the Atmospheric

Drag to do a ΔV for

entering into an Orbit

3500 4000 4500 5000 5500 6000 6500 7000 7500 800060

80

100

120

140

160

180

200

220

240Altitude vs. Velocity

Velocity [m/s]

Altitude [

Km

]

Total Mass 50 t

Velocity 7.625 km/s

Ballistic Coefficient (β) 1.5 kg/m2

Ballute Mass 3 t

TPS Mass 3 t

Max g’s 5g

Crew

Mass 46.4 t

Velocity 3.5 km/s

Ballistic Coefficient (β) 3.8 kg/m2

TPS Mass 3.0 t

Ballute Mass 2.93 t

3300 3350 3400 3450 3500 3550 3600 3650 3700

-500

-400

-300

-200

-100

0

100

x [km]

y [

km

] Working on pinpoint landing

Working on last 14km and

handing over to hovering

Cargo

Mass 68t – 91t

Velocity 6.0 km/s

TPS Mass 3.0 t

Ballute Mass 4.89 t

3300 3350 3400 3450 3500 3550 3600

-700

-600

-500

-400

-300

-200

-100

0

x [km]

y [

km

]

Some of the Cargo Missions will be Aerocaptured to LMO

Increased Mass gives a better ballute efficiency

Looking into Subsonic Parachutes

Astronauts would get a spike in g’s of about 4g

Multi-chute designs similar to Apollo being considered

Direct Re-entry into Earth

Use of Capsule with Subsonic Parachutes similar to Apollo/Orion

PICA-X ablator

6200 6300 6400 6500 6600 6700 6800

-1200

-1000

-800

-600

-400

-200

0

x [km]

y [

km

]

Conditions

Initial Velocity 12.6 km/s

Flight Path Angle -7.1o

Max gs 6.6 g

Heat Shield Mass 0.64 t

θ is longitude

R is radius from the

center of Mars

ω is the angular

velocity of Mars

D is Drag

Ψ is heading angle

relative to the North

Φ Flight Path Angle

η is the latitude

V is velocity

From Gates page 10, Gates got from Vinh

Rdot = V*sinΦ

Φdot = (1/V)*(g –(V^2)/R))*cos(Φ) +2*

ω*cos(η)*cos(Ψ)

+(R*w^2)/velocity*(cos(Φ)*cos(η)-

sin(Φ)*sin(η)*sin(psi))

Vdot = -D/M +(g)*sin(Φ)+ (ω ^2)

*R*cos(lat)*(sin(Φ)*cos(η)-

cos(Φ)*sin(η)*sin(Ψ))

θdot = V*cos(Φ)* cos(Ψ)/(R*cos(η))

ηdot = V*cos(Φ)*sin(Ψ)/R

Ψdot = -(V/R)*cos(Φ)*cos(psi)*tan(η)+2* ω

* (tan(Φ)*cos(Ψ)-sin(η))-

(r*w^2)/(V*cos(Φ))* sin(Φ)*cos(η)*cos(Ψ)

Cargo

Mission Vinf km/s

Vmar km/s

Mass t

flight Path degrres

Ballute r m

Ballute R m

Ballute Mass t TPS t

Aero Mass t Max g

Max qpres Pa

max q hball W/cm2

Vend Km/s

Altend km

1 3.36 5.953496 91 -9.8 23.4 93.6 4.89 3 7.89 2.06 109.22 1.58 104.6 14

2 3.26 5.897636 78 -9.6 23.4 93.6 4.89 3 7.89 2.38 104.71 1.5 95.27 14

3 3.31 5.925421 89 -9.6 23.4 93.6 4.89 3 7.89 2.1 105.574 1.57 103.2 14

4 3.53 6.051067 97 -9.8 23.4 93.6 4.89 3 7.89 2.24 128.37 1.7762 108.69 14

5 3.51 6.039422 96 -9.8 23.4 93.6 4.89 3 7.89 2.386 129.18 1.768 108 14

6 3.34 5.942232 90 -9.7 23.4 93.6 4.89 3 7.89 2.25 124.3 1.68 109.3 14

7 3.26 5.897636 78 -9.6 23.4 93.6 4.89 3 7.89 2.14 103.4 1.55 101 14

8 3.46 6.0105 68 -9.6 23.4 93.6 4.89 3 7.89 2.17 93.11 1.51 93.7 14

9 3.46 6.0105 68 -9.6 23.4 93.6 4.89 3 7.89 2.17 93.11 1.51 93.7 14

Mission Vp [km/s] Mass [t]

flight

Path [degree]

Ballute r [m]

Ballute R [m]

Ballute Mass [t]

Velocity

Detach [km/s] TPS [t]

Aero Mass [t] Max g

Max qpres [Pa]

max q

hball [W/cm2

A 7.625 58.48 -10.7 41.6 104 3.42 3660 3 6.42 5.1 85.1 1.6463

1 7.625 52.13 -10.7 39 93.6 2.73 3655 3 5.73 4.9 86.98 1.73

Aerocapture

Landing

Mission Vp [km/s] Mass [t] flight Path [degree]

Ballute r [m]

Ballute R [m]

Ballute Mass [m] TPS [t]

Aero Mass [t] Max g

Max qpres [Pa]

max q hball [W/cm2]

Vend [m/s]

Altend [km]

A 3.5069 55.06 -7 19.5 78 2.93 3 5.93 4.127 186.5 0.5998 95.95 14

1 3.5069 46.4 -7 19.5 78 2.93 3 5.93 4.12E+

00 157 0.5499 86.7 14

Landing

vtraj.m – uses Vinhs equations of Motion

to find rates of change.

trajectory_full_circlar_notflat.m –full

trajectory file

[1] Anderson, J.D. Hypersonic and High Temperature Gas Dynamics II Ed. AIAA, Inc. Reston, Virginia 2006.

[2] Braun, R. D. and Manning, R. M., “Mars Exploration Entry, Descent and Landing Challenges,” Journal of Spacecraft and Rockets, Vol. 44, No. 2, March—April, 2007., pp. 310—323.

[3] Gates, K. L., “Theory and Applications of Ballute Aerocapture andDual Use Ballute Systems for Exploration of the Solar System,” Ph.D. Thesis, School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, Aug. 2009.

[4]“Public Access to Mars Global Surveyor Radio Science Standard Atmospheric Temperature-Pressure Profiles” http://nova.stanford.edu/projects/mgs/tps-public.html. 11 January 2011

[5] Vinh, N. X., Busemann, A., and Culp, R. D., Hypersonic and Planetary Entry FlightMechanics, The University of Michigan Press, Ann Arbor, MI, 1980.

[6] Lockwood Mary Kae“Mars Exploration Entry, Descent and Landing Challenges,” Journal of Spacecraft and Rockets, Vol. 44, No. 2, March—April, 2007., pp. 310—323.

Crew A Phase Power System Power System Type In Use During Phase Mass [kg] Mass Rollup [kg]

Spiral Spin Up

Tug T Reactor Y 17001.85

41753.67 T Hab Solar N 5371.00

Rovers (4) Methane IC N 6000.00

Relays (100) Batteries N 13380.82

Transport of Crew to Trans Hab

EAV/MDV Batteries Y 242.15

24993.97 T Hab Solar Y 5371.00

Rovers (4) Methane IC N 6000.00

Relays (100) Batteries N 13380.82

Transit to Mars Orbit

EAV/MDV Batteries N 242.15

24993.97 T Hab Solar Y 5371.00

Rovers (4) Methane IC N 6000.00

Relays (100) Batteries N 13380.82

Mars Descent

EAV/MDV Batteries Y 242.15

19622.97 Rovers (4) Methane IC N 6000.00

Relays (100) Batteries N 13380.82

Crew A (Continued) Phase Power System Power System Type In Use During Phase Mass [kg] Mass Rollup [kg]

Surface Operations

Rovers (4) Methane IC Y 6000.00

26110.76

Relays (100) Batteries Y 13380.82

Surface Hab C Reactor Y 6390.93

ISRU

MAV Batteries N 96.86

EDV Batteries N 242.15

Mars Ascent

MAV Batteries Y 96.86

5710.01 EDV Batteries Y 242.15

T Hab Solar Y 5371.00

Transit to Earth Orbit EDV Batteries N 242.15

5613.15

T Hab Solar Y 5371.00

Earth Descent EDV Batteries Y 242.15

242.15

Crew 1-7 Phase Power System Power System Type In Use During Phase Mass [kg] Mass Rollup [kg]

Spiral Spin Up

Tug T Reactor Y 17001.85

28372.85 T Hab/S Hab Solar N 5371.00

Rovers (4) Methane IC N 6000.00

Transport of Crew to Trans Hab

EAV Batteries Y 242.15

11613.15 T Hab/S Hab Solar Y 5371.00

Rovers (4) Methane IC N 6000.00

Transit to Mars Orbit T Hab/S Hab Solar Y 5371.00

11371.00

Rovers (4) Methane IC N 6000.00

Mars Descent T Hab/S Hab Batteries N 96.86

6096.86

Rovers (4) Methane IC N 6000.00

Surface Operations

T Hab/S Hab C Reactor

Y 6390.93

12390.93 ISRU Y

Rovers (4) Methane IC Y

6000.00

Cargo A Phase Power System Power System Type In Use During Phase Mass [kg] Mass Rollup [kg]

Transit to Mars Orbit

EP Stage

C Reactor

Y

6390.93

15639.60

ISRU Y (Partial)

Surface Hab N

Rovers (4) Methane IC N 6000.00

Probes (10) Batteries N 3151.81

MDS Batteries N 96.86

Mars Descent and Autonomous Operations

ISRU C Reactor

Y 6390.93

15639.60

Surface Hab N

Rovers (4) Methane IC N 6000.00

Probes (10) Batteries Y 3151.81

MDS Batteries Y 96.86

Surface Operations Ref Crew A: Surface Operations

Cargo 1-7 Phase Power System Power System Type In Use During Phase Mass [kg] Mass Rollup [kg]

Transit to Mars Orbit

EP Stage C Reactor

Y 6390.93

12487.79 ISRU Y (Partial)

Rovers (4) Methane IC N 6000.00

MDS Batteries N 96.86

Surface Operations Ref Crew A: Surface Operations

Comm Sats Phase Power System Power System Type In Use During Phase Mass [kg] Mass Rollup [kg]

Deploy Earth Trailing Sat ET Sat Solar Y 171.77 171.77

Deploy Mars Sats M Sat Solar Y 41.39 41.39

System Power

Requirement

[kW]

Power System

Type

Power System

Mass

[kg]

Tug 4000 Reactor 17,002

Cargo/Mars Hab 1000 Reactor 6,390.9

EAV/MDV 5 Batteries 242.15

MAV 2 Batteries 96.86

EDV 5 Batteries 242.15

Rover 70 Methane IC 1,500

Probe 7 Batteries 315.18

Transfer Hab 100 Solar 5,371

Relay Station .05 Batteries 133.81

Mars Sat 1.38 Solar 171.77

Earth Sat 0.24 Solar 41.39

𝑚𝑏𝑎𝑡𝑡 = 0.0318 𝑘𝑊ℎ 2 + 8.3213 𝑘𝑊ℎ + 7.3874

The HPM is much more massive

than Space Rated Reactors

and was thrown out

0 2000 4000 6000 8000 10000 12000 14000 16000 180000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 10

4 Reactor Mass v Output

kWe

kg

Emperical Data

Curve Fit

0 2000 4000 6000 8000 10000 12000 14000 16000 180000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000Shield Mass v Output

kWe

kg

Emperical Data

Line Fit

Radiation Shielding Shows a

Linear relation to Reactor

output

Some reactors looked at used Rankine Cycle Power Converters, a Conversion Factor was applied so that a best fit solution for a Brayton Cycle could be obtained

Radiators Scale Linearly while

other components of the Heat

Rejection System do not

0 2000 4000 6000 8000 10000 12000 14000 16000 180000

1

2

3

4

5

6x 10

4 Converter Mass v Output

kWe

kg

Emperical Data

Modified to Brayton Cycle

Line Fit

0 2000 4000 6000 8000 10000 12000 14000 16000 180000

1000

2000

3000

4000

5000

6000

Radiator Mass v Output - 3.87 kg/m2 1000K Tw

kWe

kg

Radiators

Heat Rejection System

Radiator Line Fit

HRS Line Fit

Heat Rejection System Sized

using out lighter Radiators and

higher working temp

Total Mass and the masses of

each component are shown

0 2000 4000 6000 8000 10000 12000 14000 16000 180000

200

400

600

800

1000

1200

1400

1600

1800

2000

Radiator Mass v Output - 1.44 kg/m2 1200K Tw

kWe

kg

Radiators

Heat Rejection System

0 2000 4000 6000 8000 10000 12000 14000 16000 180000

1

2

3

4

5

6

7x 10

4 Total Nuclear Power System Mass v Output

kWe

kg

Total System

Reactor Core

Radiation Shield

Power Conversion System

Heat Rejection System

%reactor sizing 3

clc, clear all, close all

%% All Emperical Values:

% SAFE-400, SP-100, 1993NASA, 1988Scaled SP-100, 1983ORNL, 2001Rocketdyne, HPM

kwt=[400 2400 24000 25000 28000 52000 70000]; %kW

kwe=kwt./4; %assuming 25% actual values are [100 100 5000 25000] or [25% 4% 20% 35%]

mr=[512 700 3810 4200 3500 4500 20000];%kg Reactor Mass - emperical

ms=[0 1037 3800 3930 4100 6930 0]; %kg Shield Mass - emperical

mc=[688 909 13820 57690 11400 23762 0]; %kg Converter Mass - emperical (heat trans+power conersion)

mhr=[0 1027 4180 4180 5500 4435 0]; %kg heat Rejection Mass - emperical

Ad=[0 0 636 0 660 899 0]; % m^2 radiator Area

Mspd=[0 0 6.57 0 8.33 3.87 0]; % kg/m^2 Radiator Specific Mass

t=[1200, 0, 975, 0, 1020, 1000, 0]; %K workign temp

qdot=[0 0 31.45 0 34.85 46.72 0]; % kW/m^2 Heat Flux

md=Ad.*Mspd; %kg Radiator Mass - Emperical

% coolant loops/heat transport system are in power conversion

% - shuffled mass around

%P/A loop: ORNL 11000-4000 kg, NASA 9760-3800 kg

% moved from Shield Mass to PCS Mass - numbers are based on Scaled SP

% for Radiator mass need to accomodate for changes in qdot based on working

%% Calulated Values

acc=100;

kWt=linspace(400,70000,acc);

kWe=kWt./4;

%Reactor Mass - kg

%--HPM is way high other (space rated) show a nice curve from SAFE to

%--Rocketdyne

mR=65.5.*kWe.^0.4465; % [kg]

% mR=65.5.*kWe.^0.4465 [kg]

%%

%Shield Mass

%--Apears to be pretty much linear

PS=polyfit(kwe(2:6),ms(2:6),1);

mS=PS(1).*kWe+PS(2);

%mS=0.4731*kWe+851.4043 [kg]

%%

%Power Conversion

%--convert to Appx Brayton cycle masses using 56140/31140 conversion factor

%--applied to PCS only (not heat transfer)

r_b=56140/31140;

mcb=mc+[0 409*(r_b-1) 7860*(r_b-1) 0 4500*(r_b-1) 12060*(r_b-1) 0];

PC=polyfit(kwe([1 2 3 5 6]), mcb([1 2 3 5 6]),1);

mCb=PC(1).*kWe+PC(2);

%mCb=2.5486*kWe+492.6896 [kg]

%Radiator Mass - kg

kWw=kWt-kWe; %kWth Wasted Power

eta_eps=0.76;%0.51009743;

SBc=0.0000000567/1000; %kW/(m^2 K^4) Stephan-Boltzman Const

T=t(6); %K working Temp

To=1200; %K our system's Tw

MspD=Mspd(6); %kg/m^2 specific mass

MspDo=1.4375; %kg/m^2 Our System's Specific Mass

%radiator Area

AD=kWw/(eta_eps*SBc*(T^4)); %m^2

ADo=kWw/(eta_eps*SBc*(To^4)); %m^2

%radiator mass

mD=MspD*AD;

mDo=MspDo*ADo;

over=110.*kWw.^0.2; %Heat Rejections System Overhead Mass

mHR=mD+over;

mHRo=mDo+over;

%mHRo=(1.4375/89.3356)*(3*kWe) + 110*(3*kWe)^0.2

%%

%Total Mass

mT=mR+mS+mCb+mHRo;

% mT=65.5.*kWe.^0.4465 + 0.4731*kWe+851.4043 + 2.5486*kWe+492.6896...

% + (1.4375/89.3356)*(3*kWe) + 110*(3*kWe)^0.2

%% Solar/Battery/Fuel Cell Sizing Frankencode %% AAE 450 %% Mike Parmentier, Mike Ashenbrener clc, close all, clear all

%% Solar Array Mass - kg Xd = 0.8; %Path efficiency, assumed solfluxmars = 593; %W/m^2, average solar flux at Mars powreqE = 100000; %W, power required solfluxearth = 1358; %W/m^2, average solar flux at Earth PsaE = powreqE/Xd; %W,Power generated by solar array IdE = 0.77; %Degradation factor PoE = 0.32 * solfluxmars;%solfluxearth; %W, Power output with efficieny PbegE = PoE*IdE; %W, beginning of life power lifeE = 20; %years, lifetime LdE = (1-0.03)^lifeE; %lifetime degradation PendE = PbegE*LdE; %W, end of life power AreaE = PsaE/PendE; %m^2, array area Msp=0.85; %kg/m^2 ME=Msp*AreaE; %kg MassE = 0.04*PoE; %kg, array mass %% Radiator Mass - kg kWw=70;%kWt-kWe; %kWth Wasted Power eta_sig=0.76;%0.51009743; SBc=0.0000000567/1000; %kW/(m^2 K^4) Stephan-Boltzman Const %T=t(6); %K working Temp To=500; %K our system's Tw %MspD=Mspd(6); %kg/m^2 specific mass MspDo=1.4375; %kg/m^2 Our System's Specific Mass

%radiator Area %AD=kWw/(eta_sig*SBc*(T^4)); %m^2 ADo=kWw/(eta_sig*SBc*(To^4)); %m^2 %radiator mass

%mD=MspD*AD; mDo=MspDo*ADo; over=110.*kWw.^0.2; %Heat Rejections System Overhead Mass %mHR=mD+over; mHRo=mDo+over; %mHRo=(1.4375/89.3356)*(3*kWe) + 110*(3*kWe)^0.2

%% Battery Mass MspB=48.43; %kg/kW from ISS at nominal operating conditions kWb=20; % kW used as backup only - can draw a larger power by

more quickly draining batteries mB=MspB*kWb %or use Mike's numbers MspB2=2.7/.24; %kg/(kW*hr) OpHrs=24; OpPwr=20; mB2=MspB2*OpHrs*OpPwr % - that's 4.8 hrs at full power - more than

enough %% Total Solar Array System Mass mTsol=mHRo+ME+mB %% Capsule Entry Batteries mBcap=MspB*5 %% MAV Batteries mBmav=MspB*2 %% Fuel Cells % for 100kW hab over 180 days rO2=4*0.45359237; %kg/hr from Shuttle 14 kW rH2=0.6*0.45359237; %kg/hr RO2=rO2*100/14; %kg/hr for 100kW RH2=rH2*100/14; %kg/hr mO2=RO2*24*180; %kg/180 days - est TOF mH2=RH2*24*180; %kg/180 days mfc=255*0.45359237*5; %kg dry mass (would be 7 assuming m_i

improvements) mTfc=mfc+mO2+mH2

Nuclear Sizing Formula mT=65.5.*kWe.^0.4465 + 0.4731*kWe+851.4043 + 2.5486*kWe+492.6896... + (1.4375/89.3356)*(3*kWe) + 110*(3*kWe)^0.2 Fuel Cell Sizing Formula - Fct(t)

mTfc=578.3303+(1.8144+0.2722)*hrs [kg] - Fct(pwr) mTfc = 255*.453*0.7*kWe/14+(1.8144+0.2722)(kWe/14)*24*180 =

1.928kWe+643.8651 kWe

Solar Sizing Formula

mPsol=0.85*(kWe/0.8)/(.77*.32*1.358*(1-0.03)^20)= 13.4*kWe [kg] mRsol= mBsol=(48.43/5)*kWe mTsol=13.4*3*(1.438/89.34)*(48.43/5)kWe+110*3^0.2 kWe = 137 kWe^0.2

+ 6.267 kWe

%Michael Ashenbrener

%AAE 450

%Battery Sizing

%Sizing Code

powreq = 460; %Watt, power required

h = 17212; %km, altitude

per = 24.66; %hr, period

r = 3396.2; %km, Mars radius

a = h + r; %km, distance from center of Mars

beta = acos(r/a); %rad, angle swept out by sat. in eclipse,assuming

alpha = asin(r*tan(beta)/a); %rad, angle swept out fact. in sun incidence

tfracsun = (pi + 2*alpha)/(2*pi); %percent of period in eclipse

tday = tfracsun * per * 60 * 60; %sec, time in sunlight

tshadow = (1 - tfracsun) * per * 60 * 60; %sec, time in eclipse

tshadowhr = tshadow/60/60; %sec, eclipse time

DOD = .45; %depth of discharge

Nobatt = 1; %number of batteries

n = 0.9; %transmission efficiency

E = 250; %W-hr/kg, power density

Cr = powreq.*tshadowhr./(DOD.*Nobatt.*n); %Capacity per battery

MassB = Cr./E; %Mass mass of one battery

MassBtot = MassB.*Nobatt; %Total mass of batteries

%Curve Fit Plot

x = linspace(1,50,1000);

y = 0.0318.*x.^2+8.3213.*x+7.3874;

plot(x,y)

xlabel('kW-h')

ylabel('kg')

title('Michael Ashenbrener: Battery Sizing Curve')

http://spaceflight.nasa.gov/shuttle/reference/shutr

ef/orbiter/eps/pwrplants.html

http://www.emcore.com/assets/photovoltaics/Pa

per_Navid_9-22-00.pdf

http://www.apollosaturn.com/asnr/p27-32.htm

Badescu, Viorel, “MARS Prospective Energy and

Material Resource Guide”, Ch 9, Springer, 2009.

Will use 2 or 3 of each sensor on every crew and cargo vehicle

Total Mass/mission = 42.02 kg

Total Power/mission = 263 W

Hardware Mass [g] Power [W]

Sun Sensor 10 5

Star Sensor 20,000 120

Magnetometer 500 5

Earth-Horizon Sensor 500 1.5

Specifications/thruster

› Mass : 1.71 kg

› Thrust: 18 N

8 thrusters will be used in total on all

missions

8 back up thrusters will also used on

each mission

JY Joints - (Modified canfield joints) Mass: 4kg

Power: TBD

Has four arms instead of three

More accurate pointing than clusters

Allows 2 pi steradian motion which allows

higher degrees of rotation than gimbaled

thruster clusters

Modeled after the CMGs on ISS

Linear scaling of mass and volume

Will be placed at the cm of each mass

ISS TH CW Cargo

(Largest)

Mass of

CMG

[kg]

390908 69.76

14.85 66.32

Volume

of CMG

[m3]

272.155 0.0311

0.0104 0.1744

4 thrusters on CW

4 thrusters on hab

By Jonathan Young

Spin-up takes place after escape from LEO

Analyzed 4 different methods of spin-up

Spin-up procedure chosen: › Lengthen to 174.4 m over 5 hours

› Tightening propellant = 110 kg

› Start spin-up from 0-1.7 rpm using 505 kg of propellant over 11 hours

› 2 thrusters total are used on CW and Hab for spin-up

› Shut off thrusters and winch in the tether to cause the system to spin up to

4 rpm over 5 hours.

› Spin up from 0-4 rpm takes place over 21 hours

› Burn time of 10 hours for each thruster

› Thrusters burn alternately

Winch system attached to CW with eject

mechanism

Tether

› Mass: 1.07t

By Kirk Maatman

174.4

One impulse burn to go from LEO to transfer

arc

A/C propellant budget for correction: › Requires about 6.3 t of propellant

› Using 8 AC-18 thrusters

› Alternately pulsing at 1 second intervals

› For about 57.1 hours

› To get a ∆V of 100m/s

Total Separation

› l = 391.3 m

Total propellant mass to re-dock

› mP = 55.5 t

Propellant reserved for de-spin of artificial gravity at Mars

› mP = 0.495 t

Conclusion:

› If the tether snaps, the propellant onboard to de-spin at Mars is

not sufficient to dock the hab and counterweight together.

› Tether break is a mission failure unless other measures are put into

place

Will be performed before LMO

De-spin will be achieved by firing the

thrusters in opposite direction of spin

Similar procedure for all Mars-bound human

missions

Prop mass needed for de spin = 496 kg

De-spin will take about 10 hours.

Waste materials ejected towards the end of

de-spin

› Crew A

winch in the TH towards the CW until they are x m apart.

Eject winch system as shown

Undock MDV

Move MDV in path shown and dock MDV to CW in prep for

landing

TH stays in orbit

By Rozaine

Wijekularatne

TH goes into LMO

By Rozaine

Wijekularatne

› Crew 1-7

No MDV

Winch CW and Hab together as close as possible and

eject winch system.

Rendezvous Hab with CW as shown for landing

By Rozaine

Wijekularatne

By Rozaine

Wijekularatne

Four thrusters on JY joints

One CMG

CMG at cm of cargo

Thrusters placed at 90 degree angles

CMG and 8 thrusters on TH used for

control of ERV

No propellant budget yet

EAV

Mass: 2.6 t

Volume: 12 m3

EDV

Mass: 2.6 t

Volume: 12 m3

Transit to Earth

Mass: 45.6 t

Volume: 145 m3

MAV

Mass: 2.6 t

Volume: 12 m3

TransHab in Orbit

Mass: 45.6 t

Volume: 145 m3

MDV

Mass: 4.6 t

Volume: 17 m3

Transit to Mars

Mass: 55.2 * t

Volume: 170* m3

Trans

HAB CW

*AG System Mass not included

Diagram by Stephanie Johnston

Cargo A

Mass: 47.7 t Volume: 207 m3

Trans HAB

Trans HAB

Does NOT include: General electronics & computers, and seats for crew capsules

* HF Considerations include: Food, water, breathable air, radiation shielding, greenhouse, appliances, equipment, maintenance, crew weights, daily consumables, thermal protection, recycling systems, etc.

Food Specs

Years #

People Mass

[t] Volume

[m3] % Self-

Sustaining

Actual Mass

Reduction Crew 1 -7 Launched

8 43.5 143.8 0% 0%

Crew 1 -7 Landed

8 34.0 0% 0%

Cargo 1 0.0 8 34.7 158.7 5-10% 0% Cargo 2 2.1 16 60.6 263.5 15-20% 10% Cargo 3 4.3 24 65.0 301.1 25-30% 20% Cargo 4 6.4 32 84.0 382.0 35-40% 25% Cargo 5 8.6 40 80.1 393.4 45-50% 40% Cargo 6 10.7 48 84.6 425.6 60-70% 50% Cargo 7 12.9 56 60.8 370.4 80-90% 75% Cargo 8 15.0 56 37.4 278.1 100% 90% Cargo 9 17.1 56 37.4 278.1 100% 90%

0.0

20.0

40.0

60.0

80.0

100.0

0.0 10.0 20.0

Ma

ss [

t]

Mission Years

Mass Requirements for

Cargo Missions 1-7

= Large Greenhouse

* Does NOT include: General electronics & computers

Radiation Shielded Room

Waste after 180 Days # of People and Days ==> 8 180 Mass Units Volume Units Mass [kg] Volume [m3] Waste Food 1.82 kg/p/d 0.008 m3/p/d 2620.8 11.52 WCS Supplies 0.05 kg/p/d 0.0013 m3/p/d 72 1.872 Collection bags 0.23 kg/p/d 0.0008 m3/p/d 331.2 1.152 Hygiene Consumables 0.075 kg/p/d 0.0015 m3/p/d 108 2.16 Disposable Wipes 0.025 kg/p/d 0.0005 m3/p/d 36 0.72 Trash Bags 0.05 kg/p/d 0.001 m3/p/d 72 1.44 Used Tape 0.041 kg/p/d 0.0002 m3/p/d 59.04 0.288 Medical Consumables 83.33333 kg 0.41667 m3 83.33 0.42 Water* 4.1 kg/p/d 5904 5.91 Air +Tanks (180 days) 232

TOTAL 9518.4 25.5 *Water 4.1 kg/p/d came from 15% waste water a day assuming crew uses 27.6 kg/p/d of water, this does not include a 40 day buffer where no water is recycled which is acting as a buffer for Crew A return mass/volume

Calculations and Table by Stephanie Johnston

Lights

Mass [kg] Volume [m^3] Power [W]

22 Units (1 Hab) 74.8 0.246539 660

Thermal Protection/System

Mass (kg) Volume (m^3) Power (W)

Heating 63.72 0.02 49,020 Cooling 280.8 0.1 258.58

Total +30% 447.876 0.156 64062.154

Calculations by Joubert Lucas; Table by Stephanie Johnston

Water Recovery System

› Transit Total Mass Consumed= 6403.2 kg

› Recovery Percentage=85%

› Total Mass of Life Support System=1906.4 kg

Air Revitalization Subsystem

› Transit Total Mass Consumed= 1440 kg

› Recovery Percentage=95%

› Total Mass of Life Support System=1013.8 kg

Waste Handling and Processing

› Total Mass=463 kg

Total Mass of ECLSS= 3.14t

Total Power of ECLSS= 6.4 kW

Total Volume of ECLSS= 13.64 From Ashley Davis’s Presentation (Section 1, Presentation 4)

Crew Transit Missions

Surface Area (m^2) Thickness (m) Arial Density

(g/cm^2) Weight (kg) (includes

30% Buffer) Volume (m^3) (based on 30%

buffered weight)

2.25 X 2 X 2m room 36.74 0.09 9.00 4298.71 4.48

Crew A Food 51.24 0.02 1.60 1065.89 1.11

Crew 1 Food 32.28 0.02 1.60 671.47 0.70

Cargo Missions (to protect food from radiation)

Surface Area (m^2) Thickness (m) Arial Density

(g/cm^2) Weight (kg) (includes

30% Buffer) Volume (m^3) (based on 30%

buffered weight)

Cargo A 76.76 0.02 1.60 1596.63 1.66

Cargo 1 90.31 0.02 1.60 1878.55 1.96

Cargo 2 129.65 0.02 1.60 2696.76 2.81

Cargo 3 158.28 0.02 1.60 3292.17 3.43

Cargo 4 172.52 0.02 1.60 3588.33 3.74

Cargo 5 179.42 0.02 1.60 3731.89 3.89

Cargo 6 157.37 0.02 1.60 3273.22 3.41

Cargo 7 109.77 0.02 1.60 2283.28 2.38

Cargo 8 (and after) 49.03 0.02 1.60 1019.83 1.06

*Assuming food (dehydrated, etc) is stored in cubed boxes **Used polyethylene, which has a density of 0.96 g/cm^3

Research by Joubert Lucas; Table by Stephanie Johnston

Reference Requirement

[kg/p/d]

Water (Rapp 2008) 27.6

Crew A Mission Transit Descent/Ascent Living on Mars Estimated Days 360 40 550

Mass Total H20 Consumption kg 79488 8832 121440

Percent H20 Recovered % 85 85

Mass H20 Needed to Bring with kg 11923.2 18216

Total Transit Mass of H20 to Mars kg 20755.2

Total Transit Volume of H20 to Mars m3 20.8 *Divide kg water by 998.2 for m^3

Total Cargo (Surface) Mass of H20 kg 18216.0

Total Cargo (Surface) Volume of H20 m3 18.2 *Assuming H20 is gathered In-Situ

Crew 1 Mission Transit to Mars Descent Living on Mars Estimated Days 180 20 550

Mass Total H20 Consumption kg 39744 4416 121440

Percent H20 Recovered % 85 85

Mass H20 Needed (Back-Up) kg 5961.6 18216

Total Transit Mass kg 10377.6

Total Transit Volume m3 10.4

Total Cargo (Surface) Mass kg 18216.0

Total Cargo (Surface) Volume m3 18.2 *Assuming H20 is gathered In-Situ

By Stephanie Johnston

Estimated Consumption

Reference Requirement (kg/day) Oxygen(Rapp 2008) 1

Crew Mission A: Crew Size 8

Crew A Mission Transit Recycled Days Not Recycled Living on Mars Estimated Days 360 40 550 MT kg 2880 320 4400 Rp % 95 95 MB kg 144 220 Total Transit Mass of 02 kg 464.0 Total Transit Volume of 02 m3 Density [kg/m^3] 1140.99 Total Cargo (Surface) Mass of 02 kg 220.0 Total Cargo (Surface) Volume of 02 m3 *Assuming O2 is gathered In-Situ

Crew Mission 1: Crew Size 8

Crew 1 Mission Transit Recycled Days Not Recycled Living on Mars Estimated Days 180 20 800 MT kg 1440 160 6400 Rp % 95 95 MB kg 72 320 Total Transit Mass of 02 kg 232.0 Total Transit Volume of 02 m3 Total Cargo (Surface) Mass of 02 kg 320.0 Total Cargo (Surface) Volume of 02 m3 *Assuming O2 is gathered In-Situ

By Stephanie Johnston

Tank O2: Crew A Days Crew Size Efficency Mb [kg] # of Tanks Radius [m] Length [m] Volume[m^3] Total Mass [kg] 360 8 85 432 9 0.6 2 28.5003 448.276 40 8 0 320 7 0.5 2.2 15.7605 331.5184 7 8 0 8.4 1 0.1 0.5 0.0199 8.5611

Crew 1 Days Crew Size Efficency Mb [kg] # of Tanks Radius [m] Length [m] Volume[m^3] Total Mass [kg] 180 8 85 216 4 0.6 2.2 13.5716 230.6739 20 8 0 160 3 0.6 2.2 10.1787 174.0702

Tank N2: Crew A Days Crew Size # of Tanks Radius [m] Length [m] Volume[m^3] Total Mass [kg] 360 8 2 0.5 2.5 4.9742 411.724 40 8 1 0.1 0.1 0.0073 19.4068 7 8 1 0.1 0.1 0.0073 19.4068

Crew 1 Days Crew Size Mb [kg] # of Tanks Radius [m] Length [m] Volume[m^3] Total Mass [kg] 180 8 18.72 1 0.5 2.5 2.4871 238.0567 20 8 2.08 1 0.1 0.1 0.0073 19.4068

Summary of Tank Mass/Volume:

Mass [kg]

Volume [m^3]

O2+ N2 for Crew A Transit 1210.93 49.24 O2+ N2 for Crew 1 Transit 662.21 26.24 O2+ N2 for Crew Capsule 27.97 0.0272

By Ashley Davis and Stephanie Johnston

Food Dry Food Consumed Earth food Emergency Food Greenhouse + Supplies Food Savings % Savings

Subtotal

Food Dry Food Consumed Earth food Emergency Food Greenhouse + Supplies Food Savings % Savings

Subtotal

First Cargo Second Cargo Third Cargo Fourth Cargo

8 800 16 800 24 800 32 800

Mass [kg]

Volume [m3]

Mass [kg]

Volume [m3]

Mass [kg]

Volume [m3]

Mass [kg]

Volume [m3]

14720.0 51.2 29440.0 102.4 44160.0 153.6 58880.0 204.8

15278.9 53.1 27199.8 94.6 35762.7 124.4 40967.6 142.5

1511.1 5.3 1679.0 5.8 3190.1 11.1 3358.0 11.7

11000.0 50.0 21000.0 80.0 11000.0 50.0 21000.0 80.0

10.0 0.0 4721.2 16.4 11447.2 39.7 22874.4 79.4

0.0 0.0 8.6 8.3 18.6 17.6 25.9 25.3

27790 108.4 49878.8 180.448 49952.8 185.488 65325.6 234.176

Fifth Cargo Sixth Cargo Seventh Cargo 8th, 9th, 10th…Etc 40 800 48 800 56 800 56 800

Mass [kg]

Volume [m3]

Mass [kg]

Volume [m3] Mass [kg]

Volume [m3] Mass [kg]

Volume [m3]

73600.0 256.0 88320.0 307.2 103040.0 358.4 103040.0 358.4 41975.0 146.0 32236.8 112.1 14103.6 49.1 0.0 0.0

5037.0 17.5 6380.2 22.2 8395.0 29.2 6720.0 23.4 11000.0 50.0 21000.0 80.0 11000.0 50.0 6000.0 30.0 36988.0 128.5 62183.0 216.1 95101.4 330.5 110880.0 385.4

38.9 37.6 51.1 50.2 74.0 72.0 89.7 87.8 58012 213.52 59617 214.32 33498.6 128.256 12720 53.36

Calculations by Lisa Kurtzhals and Spreadsheet by Stephanie Johnston

Nonstop Communication between Earth

and 8 Astronauts at all times

HDTV feed between each astronaut and

Earth

10 MBps of data from Earth to Mars

90 MBps of data from Mars to Earth

Min 7 ground stations on Earth

One Earth trailing satellite

Antennae on Crew Transfer Vehicle

Three Mars-orbiting satellites

One Mars ground station

Antennae on Rovers

Basic Transmission Antenna

Basic Reception Antenna

• One receiving dish and one

transmitting dish for each link

• Link Budget Analysis used to

size dish sizes and power

requirements to achieve

signal gain margin of >3 dB

• Parabolic dish design used for

all dishes

*CAD Drawings by Parthsarathi Trivedi

*Diagram by Parthsarathi Trivedi

35 deg.

θ

θ = 50o

φ = 155o

3 Satellites in Mars-Synchronous

Orbit

-17,031 km altitude

-25o inclination

MS3

MS2

MS1

φ

High-gain horn antenna: Single Antenna:

25 W Transmitting Power

0.84 kg Mass

0.011 m3 packing volume

Entire Network (200 Repeaters):

5 kW Transmission Power

168 kg Mass

2.21 m3 packing volume

Repeater Batteries:

9.39 kg per battery

1877 kg (200 batteries)

2.4 kWh (2 continuous days of

power)

Total System Mass:

11.07 kg per repeater unit

2048 kg total mass

Device Total Mass Total TransmissionPower

CTV Comm. 250 kg 180 W

TRAILSAT 500 kg 240 W

MS1 450 kg 1.38 kW

MS2 450 kg 1.38 kW

MS3 450 kg 1.38 kW

Surface Hab 4.2 kg 30 W

Rover-HD 4.2 kg 30 W

Rover-Audio 0.34 kg 55 W

Cave Network 2048 kg 5 kW

*Illustration by Parthsarathi Trivedi

CTV to Earth Link

Transmitting Dish Size 5.25 m

Receiving Dish Size 4 m

Propagation

Distance

1.745*109 m

Beamwidth 0.1 deg

Transmitting Power 180 W

Transmitting

Frequency

40 GHz

Bit Rate 754,974,720

bits/sec

Gain Margin 3.73 dB

TRAILSAT to Surface Link

Transmitting Dish Size 1.31 m

Receiving Dish Size 1.4 m

Propagation

Distance

175,627,910

km

Beamwidth 60 deg

Transmitting Power 60 W

Transmitting

Frequency

40 GHz

Bit Rate 754,974,720

bits/sec

Gain Margin 3.91 dB

TRAILSAT to Mars Link

Transmitting Dish Size 5.25 m

Receiving Dish Size 5.25 m

Propagation

Distance

1.75*109 km

Beamwidth 0.1 deg

Transmitting Power 180 W

Transmitting

Frequency

40 GHz

Bit Rate 335,544,320

bits/sec

Gain Margin 3.85 dB

MSO to Surface Link

Transmitting Dish Size 0.66 m

Receiving Dish Size 0.5 m

Propagation

Distance

18,000 km

Beamwidth 4 deg

Transmitting Power 1.2 kW

Transmitting

Frequency

8 GHz

Bit Rate 754,974,720

bits/sec

Gain Margin 3.05 dB

MSO to Earth Link

Transmitting Dish Size 5.25 m

Receiving Dish Size 4 m

Propagation

Distance

1.745*109 m

Beamwidth 0.1 deg

Transmitting Power 180 W

Transmitting

Frequency

40 GHz

Bit Rate 754,974,720

bits/sec

Gain Margin 3.73 dB

Rover to Rover Direct Communication

› Omnidirectional .86 m Antennae

› VHF Audio Transmission

› 160 MHz Signal Frequency

› 111 km Max. Range

› 55 W Transmission Power

Earth to Mars Link

Transmitting Dish Size 5.25 m

Receiving Dish Size 4 m

Propagation

Distance

1.75*109 km

Beamwidth 0.1 deg

Transmitting Power 180 W

Transmitting

Frequency

40 GHz

Bit Rate 335,544,320

bits/sec

Gain Margin 3.73 dB

Earth to TRAILSAT Link

Transmitting Dish Size 1.31 m

Receiving Dish Size 1.4 m

Propagation

Distance

175,627,910

km

Beamwidth 0.4 deg

Transmitting Power 180 W

Transmitting

Frequency

40 GHz

Bit Rate 335,544,320

bits/sec

Gain Margin 3.57 dB

Vehicle Breakdown

Configuration

Design

Crew A

Vehicle Breakdown

Configuration

Design

Crew 1-7

Vehicle Structural Mass [t]

Earth Ascent Vehicle / Mars

Descent Vehicle

5.7

Counter weight 21.97

Transit Hab 12.23

Cargo #1 8.21

Cargo #2 12.28

Cargo #3 8.21

Cargo #4 9.43

Mars Ascent Vehicle / Earth

Descent Vehicle

5 t

Total Dimensions

› 14 m Height + Capsule

› 10 m Diameter

Transit Hab › 6.5 m Height

Winch › 1 m Height

Counterweight › 6.5 m Height

Capsule › 6m Height

› 6m Diameter

Nellans

6 m

l-6m-l

6.5m

1m

6.5m

l--10m--l

14m

Nellans

Vehicle Structural mass [t]

Earth Ascent Vehicle 5.7

Tranist Hab 26.64

Counter Weight 21.97

Cargo Mission Structural Mass [t] Volume [m^3]

1 11.36 234.16

2 10.83 207.13

3 11.43 237.8

4 12.86 311.2

5 10.42 219.0

6 12.34 284.3

7 12.04 269.2

8 11.15 223.6

9 11.15 223.6

2 Transit Habs

2 Cargo Habs

2 Crews = 16 People

Inflatable Top

› 120 m^3 of space to

empty

Leg Mass

› 540 kg

Underbelly Mass

› 100 kg

Nellans

Mass of legs and bottom structure › Legs = 540 kg

› Bottom = 100 kg

Average additional space in each cargo mission is 315.72 m^3 over the 9 missions. Found by adding all the volumes and dividing by 9. › Means that there is 75 cubic meters of space

in the cargo missions that can be permanent space.

Total Rod Mass Total Truss Mass

Outer Panel Mass

Inner Panel Mass

Length [m]

Number of Rods

Cross Sectional Area [m²] Density [kg/m³] Single Truss [kg] 7.9515 Outer Surface Area [m²] 296.4

Inner Surface Area [m²] 212.1

2.25 48

0.0002271 4540

Number of Trusses 24 Al 6061-T6 Arial Density [kg/m²] 5.4 Total Mass [kg] 2889

3.827 24

Total Mass [kg] 190.8 Stuffing Arial Density [kg/m²] 8.5

4.439 16

Ti-662 Panel Thickness [m] 0.003

3.369 16

Ti-662 Density [kg/m³] 4540

0.985 16

Total Mass [kg] 8157

Total Mass [kg] 351.0

Total Structural Mass [t] 11.59

Zack Wallace Spreadsheet

4

Rovers A/C Engin

e Hover

Prop Hover

Inert Structur

e Food Greenhouse

+ Cleaning

Supplies Toilet WCS

Supplies Collection

Bags Hygiene

Consumables Clothe

s Disposable

Wipes Trash

Bags Extra

Hardware Radiation

Shielding

6 3 14.5 7.71 0.54 10.72 14.72 11.04 0.2 0.045 0.32 1.472 0.48 0.099 0.16 0.32 0.61369 5.37745

87.77128 45.30128

32 - 15 11.36 51.2 38.4 1.44 2.18 8.32 5.12 9.6 0.0336 3.2 6.4 3.74 5.60151

234.1656

Cargo Mission 1

Cargo Mission 2

2 Missions 3 Rovers A/C Engin

e Hover

Prop Hover

Inert Structur

e Food Greenhouse

+ Cleaning

Supplies Toilet WCS

Supplies Collection

Bags Hygiene

Consumables Clothe

s Disposable

Wipes Trash

Bags Extra

Hardware Radiation

Shielding

Mass (t) 4.5

3 14.5 6.45 0.448 10.19 13.25 5.52 0.2 0.045 0.32 1.472 0.48 0.0099 0.16 0.32 0.61369 3.978585 73.3653

3

Volume (m^3) 24

15 15 10.83 46.08 19.2 1.44 2.18 8.32 5.12 9.6 0.0336 3.2 6.4 3.74 4.14435 207.125

3

Kyle Hoos Spreadsheet

2 Missions 1

Rover A/C

E

n

g

i

n

e Hover Prop Hover

Inert Structure Food Greenhouse

+ Cleaning

Supplies Toilet WCS

Supplies Collection

Bags Hygiene

Consumables Clothe

s Disposable

Wipes Trash

Bags Extra

Hardware Radiation

Shielding

Mass (t) 1.5

3

1

4

.

5

7.892 0.5486 12.22 20.608 5.52 0.4 0.045 0.64 2.944 0.96 0.0198 0.32 0.64 1.227 5.29235

89.8616

Volume

(m^3) 8 -

1

5 12.86 71.68 19.2 2.88 2.18 16.64 10.24 19.2 0.0672 6.4 12.8 7.48 5.5649479

311.1718

Cargo Mission 4

2 Missions 3 Rovers A/C Engine Hover

Prop Hover Inert Structure Food Greenhouse

+ Cleaning

Supplies Toilet WCS

Supplies Collection

Bags Hygiene

Consumables Clothes Disposable

Wipes Trash

Bags Extra

Hardware Radiation

Shielding

Mass (t) 4.5

3 14.5 7.39 0.5136 10.79 17.66 5.52 0.3 0.045 0.48 2.208 0.72 0.01485 0.24 0.48 0.920535 4.8202375

84.13001

Volume

(m^3) 24

- 15 11.43 61.44 19.2 2.16 2.18 12.48 7.18 14.4 0.0504 4.8 9.6 5.61 5.02108

237.7879

Cargo Mission 3 Kyle Hoos Spreadsheet

Cargo Mission 5

Cargo Mission 6

2 Missions 1 Rover A/C Engine Hover

Prop Hover Inert Structure Food Greenhouse

+ Cleaning

Supplies Toilet WCS

Supplies Collection

Bags Hygiene

Consumables Clothes Disposable

Wipes Trash

Bags Extra

Hardware Radiation

Shielding

Mass (t) 4.5

3 14.5 7.9121 0.55 10.42 18.4 5.52 0.5 0.045 0.8 3.68 1.2 0.02475 0.4 0.8 1.534225 4.952675

90.09575

Volume

(m^3) 8

- 15 11.06 64 19.2 3.6 2.18 20.8 12.58 24 0.084 8 16 9.35 5.15903646

219.013

2 Missions 2

Rovers A/

C Engin

e Hover

Prop Hover

Inert Structur

e Food Greenhouse

+ Cleaning

Supplies Toilet WCS

Supplies Collection

Bags Hygiene

Consumables Clothe

s Disposable Wipes Trash

Bags Extra

Hardware Radiation

Shielding

Mass (t) 3

3 14.5 7.2663 0.5051 11.7 13.24

8 5.52 0.6 0.045 0.96 4.416 1.44 0.0297 0.48 0.96 1.22738 3.978585

82.7474

6

Volume

(m^3) 16

- 15 12.34 46.08 19.2 4.32 2.18 24.96 15.36 28.8 0.1008 9.6 19.2 11.44 4.144359375

284.340

7

Kyle Hoos Spreadsheet

Cargo Mission 7

2 Missions 2

Rovers A/

C Engine Hover

Prop Hover

Inert Structure Food Greenhouse

+ Cleaning

Supplies Toilet WCS

Supplies Collection

Bags Hygiene

Consumables Clothe

s Disposable

Wipes Trash

Bags Extra

Hardware Radiation

Shielding

Mass (t) 3

3 14.5

6.2859

0.5485 11.4 5.152 5.52 0.7 0.045 1.12 5.152 1.68 0.0345 0.56 1.12 2.147915 2.11965

71.69078

Volume

(m^3) 16

- 15 12.04 17.92 19.2 5.04 2.18 29.12 17.92 33.6 0.1176 11.2 22.4 13.09 2.20796875

269.2342

Cargo Mission 8

2 Missions A/C Engine Hover Prop Hover Inert Structure Food Greenhouse+ Cleaning Supplies WCS Supplies Collection Bags Hygiene Consumables Clothes Disposable Wipes Trash Bags Extra Hardware

Mass (t)

3 14.5 7.8898 0.5485 10.51

0 5.52 0.7 1.12 5.152 1.68 23.06666667 0.56 1.12 2.147915 89.83485617

Volume (m^3)

- 15 11.15

0 19.4 5.04 29.12 17.92 33.6 0.1176 11.2 22.4 13.09 223.60388

Cargo Mission 9

2 Missions A/C Engine Hover Prop Hover Inert Structure Food

Greenhouse+

Cleaning Supplies

WCS Supplies

Collection Bags

Hygiene Consumables Clothes

Disposable Wipes

Trash Bags

Extra Hardware

Mass (t)

3 14.5 7.8898 0.5485 10.51

0 5.52 0.7 1.12 5.152 1.68 23.0667 0.56 1.12 2.147915 89.83486

Volume (m^3)

- 15 11.15

0 19.4 5.04 29.12 17.92 33.6 0.1176 11.2 22.4 13.09 223.6039

Kyle Hoos Spreadsheet

Cargo A1 Cargo A2 Cargo A3 Cargo A4

HF/hardware 35

HF/Consume 0 0

Insitu Collect 2 0 0 Insitu Prop 1.5

0 0 0 EDV Cap 4.8

0 0 Comm 0

Rovers 6 0 0 0

43 6.3

mass =

7.5685 11.6359 7.5685 8.7922

mass_prop =

8.4788 8.4619 2.6234 9.1859

mass_inert =

0.5894 0.5883 0.1824 0.6386

>> MASS = mass + .54 + .1

MASS =

8.2085 12.2759 8.2085 9.4322

Taken From Kyle Hoos Code

5.848m

7.2

18

m

1.695

3.827m

Vstorage =

38.91905m^3

Vcommon =

116m^3

Melissa Young and Zack Wallace

V = 15m3

V = 15m3

V = 15m3

V = 15m3

Vstorage =

46.534086m^3

X2 floors =

93.068172 m^3

Melissa Young and Zack Wallace

Olympus Mons* › 226.3oE, 18.3oN

› Max elevation: 22 km

Arsia Mons › 238.9oE, 8.8oS

› Max elevation: 16 km

Pavonis Mons › 247.2oE, 1.2oN

› Max elevation: 14 km

Ascraeus Mons › 226.2oE, 18.3oN

› Max elevation: 18 km Mars Global Surveyor image

*

Dimensions for one Probe

› Mass: 0.4t

› Power: 13 KW*h

› Volume: 2.0m3

Sources

Two-stroke internal combustion engine

Solar Panels ( 0.698t)

Lithium Ion Battery (0.2t)

Hydraulic Pump

Heat Rejection System

Capabilities

› Up to ~3.0 m/s

› Navigate 60o incline

› Carrying 0.08t scientific instruments

Features

› Cameras: true color images, hand lens imager,

descent imager, navigation, hazard avoidance

› Rover Environmental Monitoring System

› Hydrogen, ice, water detector

› Radiation assessment

› Sample analysis

Illustration by Alaina Austin, Inspired by Boston Dynamics

Summary of different mechanisms

Final recommendation

› Mass

› Volume

› Power

Concept Elaboration by: Charles Miller

Airbags

Mass: .533t per hab

Volume: 302.64 m3 per hab

Not feasible

Hab is too heavy to implement airbag system

Hovering

› Fuel

Mass: 5.1t per hab

Volume: 4.15 m3 per hab

Need hovering landing gear (more mass)

Illustration by Alaina Austin

Mass: 0.804t

Volume: 0.273 m3

Proven, well understood

technology

Rough terrain may

make this infeasible

Will need either wings or

a propulsive force

Schematic and concept elaboration by Joubert Lucas

Use a winch to lower the Hab

Mass: 0.4t (winch without anchor)

Power: 2.5 – 3.4 KW

Limited mobility

Will only be successful if the correct site geometry found

Pros

› Re-usable

› Compatible with both cave geometries

Cons

› Hab requires large wheels or legs

› No clear method of guiding hab further into the lava tube

› Need to drill in order to anchor the winch

› Hab can be damaged during the lowering process due to

impact with cave walls

Schematic and concept elaboration by Parthsarathi Trivedi

Mass: 3.08 t

Power: 3 MW

Pros:

› Safe and slow descent

of hab into lava tube

Cons:

› Extremely high torque

about joints.

› Requires large hydraulic system.

› No lateral movement

into the cave Image and concept elaboration by Ajay Jakate

*Image not to scale

Schematic and Concept Elaboration by: Alaina Austin

200M1-A1-SA

2 front tracks

4 back tracks

Mass: 22.22t per hab

Volume: 4.54 m3 per hab

Limited mobility

Will only be successful if the

correct site geometry found

140

Mobile crane

Mass: 36.3t

Volume: 187.8 m3

Power: 167.8 kW

Pros

Can also be used for loading/unloading vehicles

Moving materials, and assembly/disassembly

Mass savings over a crawler type crane

Cons

Cons: may require some on site prep for stability.

Schematic and concept elaboration by Dan Jones

2 tracks Mass: 47.2t

Volume: 3.0 m3

Pros

› Can easily transport the hab to its final destination inside the lava tube

› Once set up, can be re-used for going in and out of the cave

› No power required for coming down due to friction force (length factor)

Cons

› Difficult to construct rail (pylons)

› Needs regular maintenance

Schematic by Parthsarathi Trivedi, Concept elaboration by: Rob Wallace

Spray hot water down hole to create 10 m wide level slope down lava tube.

Use winch to lower down

~547 days of crew time to set up

Water required › Bad case: 37500 m3

,37500t

› Better case: 10000 m3

or less 10,000 t or less

Require either shipping water or water acquisition operations

Image by Pat Rawlings

Image by Bill O’Neill

Hybrid of Boom Crane and Rail Line

30% Margin for deviation › Mass: 108.55t

› Volume: 248.04 m3 › Power: 167.8 kW

Pros: › One time mass delivery

› Crane can be useful tool for other operations

› Rail enables mobility over harsher terrain

› Used for geometry 1 or 2

› Re-usable (for both entry and exit from the cave)

› Requires minimal power

› Can easily guide the hab(s) into the lava tube

› Rails and supports easier to lay out on the flat floor of the lava tube

Figure by Parthsarathi Trivedi

Schematic by Parthsarathi Trivedi