Promoptica “Nouvelles Techniques d’Eclairage” Inorganic LEDs: working principles and prospects...

Preview:

Citation preview

Promoptica“Nouvelles Techniques d’Eclairage”

Inorganic LEDs: working principles and prospects for general lighting applications

Laboratory for Light and Lighting

KaHo St.-LievenUniversity College

Gent (B)

P. Hanselaer

Liège

Novembre 8, 2007

Laboratorium voor Lichttechnologie

1. Main categories of light sources

Laboratorium voor Lichttechnologie

Light sources

DischargeIncandescent

Mercury Sodium

Low pressure

High pressure

FL, CFL MetalhalideOutdoor

illumination

Outdoor,

Shops

Solid State

LED

Low pressure

High pressure

Laboratorium voor Lichttechnologie

2. Elementary Solid State Physics

Laboratorium voor Lichttechnologie

Intrinsic semiconductor

“Free” electrons and holes

Bandgap Eg

EConduction band

Valence band

Laboratorium voor Lichttechnologie

Recombination between an electron and a hole: energy can be released by the creation of a photon

Band gap Eg

E

At room temperature: only a small amount of free electrons and holes: limited number of photons!

Photon

Light!

Laboratorium voor Lichttechnologie

Extrinsic semiconductor (n)

Donor-atoms (P); n-type

E

Laboratorium voor Lichttechnologie

Acceptor-atoms (B); p-type

Extrinsic semiconductor (p)

E

Laboratorium voor Lichttechnologie

+ -

Injection of free electrons in p-type and free holes in n-type

p-n junction!

p n

Laboratorium voor Lichttechnologie

3. Electrical characteristics

Laboratorium voor Lichttechnologie

• Diode characteristic

• Low, dc voltage

• Forward voltage dependent on bandgap of the semiconductor:

AlGaInP: 2.95 V typ.

InGaN: 3.42 V typ.

Electrical characteristics

Laboratorium voor Lichttechnologie

Electrical characteristics

Laboratorium voor Lichttechnologie

4. Optical characteristics

Laboratorium voor Lichttechnologie

1240( ) . .

( )g

cE E eV h f h

nm

Photon energy (and colour) is determined by bandgap Eg

Rather monochromatic radiation

Optical characteristics: spectrum

Band gap Eg

E

1240( )

( )g

nmE eV

Band gap Eg

E

1240( )

( )g

nmE eV

Band gap Eg

E

Band gap Eg

E

1240( )

( )g

nmE eV

Laboratorium voor Lichttechnologie

0

300

600

900

1200

1500

350 400 450 500 550 600 650 700 750

Golflengte (nm)

Sp

ectr

ale

stra

ling

sin

ten

site

it (

mW

/sr.

nm

)

LED1

Peak wavelength λp : from UV to IR

Full Width at Half Maximum: from 20 to 50 nm

Optical characteristics: spectrum

Laboratorium voor Lichttechnologie

Optical characteristics: chromaticity

CIE chromaticity

• Purity

• Dominant wavelength

Laboratorium voor Lichttechnologie

Optical characteristics: chromaticity

CIE chromaticity

Additive mixing with wide colour gamut

Laboratorium voor Lichttechnologie

Bandgap engineering to obtain an extensive range of

wavelengths and colours:

use of compound semiconductors

Optical characteristics: colour

Laboratorium voor Lichttechnologie

Compound Semiconductors

Laboratorium voor Lichttechnologie

AlGaInP

InGaN

Laboratorium voor Lichttechnologie

Optical characteristics: white LEDs

Laboratorium voor Lichttechnologie

Three or more LEDs of different Colors

+ The more colours one has to mix, the more control one has in producing white light with a high color rendering index.

+ Photons from each LED contribute directly to the light intensity, i.e. no conversion efficiencies have to be considered.

+ Extensive range of hue’s can be obtained

- Optical control, coloured shadows

Laboratorium voor Lichttechnologie

Osram 6 lead multiLED

Laboratorium voor Lichttechnologie

Optical characteristics:Radiant/luminous Flux Φ(e)

forward electrical current

# recombinations

# photons

luminous flux

Laboratorium voor Lichttechnologie

rode LED : I = f(Y)

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160 180 200

Y [cd/m2]

I [m

A]

LED’s: current driven

Laboratorium voor Lichttechnologie

Efficacy red: 55 lm/W (room temperature)

Energy-efficiency: 24 %

LossesNon-radiative recombination (heat)

Internal reflections

Optical characteristics: efficacy

Laboratorium voor Lichttechnologie

Non-radiative recombination

Temperature of the semiconductor junction increases!

Laboratorium voor Lichttechnologie

Total Internal Reflection

Substrate

Active material

absorption

Partially reflectedTotally reflected

Laboratorium voor Lichttechnologie

Internal reflections

1. semiconductor-encapsulant

2. encapsulant-air

Laboratorium voor Lichttechnologie

Optical characteristics: spatial

Dependent on

• position of die and reflector

• shape of the external dome

www.nichia.com

Laboratorium voor Lichttechnologie

Secundary optics

0

20

40

60

80

100

120

140

-90 -70 -50 -30 -10 10 30 50 70 90

zonder lens

medium beam

Optical characteristics: spatial

Laboratorium voor Lichttechnologie

5. Effect of Temperature

Laboratorium voor Lichttechnologie

Effect of Temperature: luminous flux

Increase of non-radiative recombination!

Laboratorium voor Lichttechnologie

Effect of Temperature: peak wavelength and light flux

Decrease of the bandgap, increase of wavelength!

Band gap Eg

E

1240( )

( )g

nmE eV

Band gap Eg

E

1240( )

( )g

nmE eV

Band gap Eg

E

Band gap Eg

E

1240( )

( )g

nmE eV

Laboratorium voor Lichttechnologie

EN 12368

15s 1min

90min3min

30min10min

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.53 0.55 0.57 0.59 0.61

x

y

Effect of temperature: chromaticity

Chromaticity versus warm-up time

Laboratorium voor Lichttechnologie

Effect of temperature:

lumen maintenance

http://www.lrc.rpi.edu/programs/solidstate/

ongoingProjects.asp?ID=57

Laboratorium voor Lichttechnologie

Thermal management

Laboratorium voor Lichttechnologie

Thermal management

( )T

P WR

10 °C/W

Laboratorium voor Lichttechnologie

Determination of junction temperature

LuxeonIII U(junction T) for series 1 (used)

y = -0.0026x + 2.4443

R2 = 0.999

1.90

1.95

2.00

2.05

2.10

2.15

2.20

2.25

2.30

2.35

2.40

2.45

20 30 40 50 60 70 80 90 100 110

temperature (°C)

U (

V)

1: 10 µA

1: 100 µA

2: 10 µA

2: 100 µA

Laboratorium voor Lichttechnologie

6. Photometry of LEDs

Photometer/colorimeter or

spectroradiometer

Laboratorium voor Lichttechnologie

780

,

380

780'

,

380

Y . ( ). ( )

Respons . ( ). ( ). ( )

e

e

Tristimulus value k y d

k S d

Photometer

Laboratorium voor Lichttechnologie

Important errors in tails of eye sensitivity curve

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

400 500 600 700

Wavelength (nm)

Re

lati

ve

Re

sp

on

se

CIE Photopic LuminosityFunction

Laboratorium voor Lichttechnologie

Spectroradiometer

780

,

380

. ( ). ( )eY k y d

Bandwidth: 5 nm

Laboratorium voor Lichttechnologie

Photometry of LEDs: intensity

Some LEDs have a very narrow radiation pattern (FWHM 2°)

• Large distance to detector and small detector aperture required.

• CIE 127 standardisation: “averaged LED intensity” at 316 mm (A) or 100 mm (B) distance and 1 cm2 detector area.

Laboratorium voor Lichttechnologie

Photometry of LEDs: luminous fluxReference light source required

Laboratorium voor Lichttechnologie

Cosine-corrected photometer head

baffle

Substitution

Standard LED

Test LED

Auxiliary LED

d

50 mm

Precision aperture

Fast measurements: partial flux

Laboratorium voor Lichttechnologie

7. LED penetration into general lighting

Laboratorium voor Lichttechnologie

LED penetration into General Lighting: main obstacles

• Luminous flux

• Efficacy

• Colour and flux maintenance

• Thermal management

• Reproducibility

• Price

Laboratorium voor Lichttechnologie

LED penetration into General Lighting: obstacles : luminous flux (white)

P(W) I(mA) Φ(lm)

0.070 20 1.5

Laboratorium voor Lichttechnologie

LED penetration into General Lighting: obstacles : luminous flux

P(W) I(mA) Φ(lm)

1.2 350 60

3.6 1000 100

5.0 700 120Luxeon

Laboratorium voor Lichttechnologie

LED penetration into General Lighting: obstacles : luminous flux

P(W) I(mA) Φ(lm)

4.7 420 108

26 2300 567

860 13300“Chip on board”

technology

Lamina Ceramics, Osram

Multiple LED package

Laboratorium voor Lichttechnologie

LED penetration into General Lighting: obstacles : efficacy/ CRI

Laboratorium voor Lichttechnologie

CRI (Ra)Test sourceColour samples(8 of 14)

Standard illuminant<colour differences>

Colour coordinates

Colour coordinates

Laboratorium voor Lichttechnologie

Low CRI and yet high colour preference?

CRI and LED’s: subject of international research

CIE TC 1-69

Colour Rendition by White Light Sources

Laboratorium voor Lichttechnologie

Obstacles: efficacyBUT Lighting Systems

Higher Light Output Ratio possible due to a higher directionality of the “naked” light source

Laboratorium voor Lichttechnologie

Obstacles: efficacyBUT coloured applications

0

5

10

15

20

25

30

35

40

350 400 450 500 550 600 650 700 750

Golflengte (nm)

Sp

ec

tra

le s

tra

ling

sin

ten

site

it (

mW

/sr.

nm

)Halo1*0.01

Halo2

LED /Halogen green traffic signal: efficiency (cd/W): 8 / 1

Laboratorium voor Lichttechnologie

Laboratorium voor Lichttechnologie

LED penetration into General Lighting: obstacles : lumen maintenance

• LED lifetime is sometimes specified in MTBF (mean time between failure).

• Various LED manufacturers predict LED source life up to 100K hours

• “Lumen Maintenance” is even more important.• End-of-Life specification: light output has

dropped to 70% compared to the original light output:

50.000 hrs !

Laboratorium voor Lichttechnologie

LED penetration into General Lighting: obstacles : thermal management - chip

Laboratorium voor Lichttechnologie

LED penetration into General Lighting: obstacles : thermal management - luminaire

Project 2.2 Californian Energy Commission

Laboratorium voor Lichttechnologie

LED penetration into General Lighting: obstacles : reproducibility

“binning”

Laboratorium voor Lichttechnologie

LED penetration into General Lighting: obstacles : price

Laboratorium voor Lichttechnologie

Pro and contra: pro• Saturated colours, dynamic colour effects with a

large colour gamut• High efficiency for applications with coloured light

(e.g. traffic lights)• Liftetime up to 50 000 hours (70% definition) • Vibration-proof• Low voltage• No mercury• No UV and IR radiation• Instantaneous switch-on • Easy dimmable

Laboratorium voor Lichttechnologie

Pro and contra: contra• Reproducibility is difficult (semiconductor

processing); binning (sorting by intensity, colour, forward voltage) is required

• Colour and intensity shift with temperature, driving current and life time

• Low output/device

• Low efficacy for white (but is improving)

• Price

Laboratorium voor Lichttechnologie

www.lichttechnologie.be

Instituut voor de Aanmoediging van Innovatiedoor Wetenschap en Technologie in Vlaanderen

KaHo St.-LievenGebr. Desmetstraat 1

B-9000 GENTTel: + 32 9 265 86 10

Peter.Hanselaer@kahosl.be

Laboratorium voor Lichttechnologie

Laboratory for Light&Lighting

Founded in 1997 with the support of IWT Vlaanderen (Flemish institute for the promotion of innovation in science and technology).

Main activities:– Education– Scientific research – Supporting industrial developments

Laboratorium voor Lichttechnologie

Topics

Photovoltaics

Lighting Optical design

Appearance

Measurement Facilities

Laboratorium voor Lichttechnologie

Lighting

Research: – Criteria efficient lighting– LED’s (PhD)

Supporting industry– Groen Licht Vlaanderen: promotion of

energy efficient lighting (Greenlight)– Shoplighting

Laboratorium voor Lichttechnologie

Optical design

Research: – Luminaire design with ray-tracing (PhD)

Supporting industry– Secundary optics for LED clusters– Surface with uniform luminance

Laboratorium voor Lichttechnologie

Appearance

Research: – Gloss (PhD)– Colour rendering with LED’s

Supporting industry– Automotive– Wood– Retro-reflection

Laboratorium voor Lichttechnologie

Photovoltaics

Research: – Spectral response– Light trapping in cells and modules

Supporting industry– Stand-alone systems– Signalization

Laboratorium voor Lichttechnologie

Measurement facilities

• 8/d spectral reflectance and transmittance

• Goniometer

• Spectrometers: VIS, UV, near IR

• Electrical characterization

• Bidirectional Scattering distribution

• Photometric/colorimetric camera

• LED integrating sphere

Recommended