Progressing fragments for challenging targets · 1 Progressing fragments for challenging targets....

Preview:

Citation preview

1

Progressing fragments for  challenging targets

Roderick E Hubbard Vernalis (R&D) Ltd, Cambridge

YSBL & HYMS, Univ of York, UK

Fragments 2013

For slides –

r.hubbard@vernalis.com

2

Trends for new technologies

In the beginning – lots of excitement•

Which can lead to hype and over‐selling

Time

Expectation

Technology Trigger

Analysis / terms initially proposed by Gartner group (Murcko)

3

Trends for new technologies

In the beginning – lots of excitement•

Which can lead to hype and over‐selling

Time

Expectation

Technology Trigger

Inflated expectations

Analysis / terms initially proposed by Gartner group

4

Trends for new technologies

Too rapid (often inexpert) deployment•

It doesn’t work ‐

disillusionment

Time

Expectation

Technology Trigger

Trough of Disillusionment

Inflated expectations

Analysis / terms initially proposed by Gartner group

5

Trends for new technologies

Too rapid (often inexpert) deployment•

It doesn’t work ‐

disillusionment

Time

Expectation

Technology Trigger

Trough of Disillusionment

Inflated expectations

Analysis / terms initially proposed by Gartner group

6

Trends for new technologies

Eventually, expertise grows•

Begin to understand how and where to apply methods

Time

Expectation

Technology Trigger

Inflated expectations

Trough of Disillusionment

Slope of Enlightenment

Analysis / terms initially proposed by Gartner group

7

Trends for new technologies

Learn how to integrate the methods into the process •

Add to productivity

Time

Expectation

Technology Trigger

Inflated expectations

Trough of Disillusionment

Slope of Enlightenment

Plateau of productivity

Analysis / terms initially proposed by Gartner group

8

Fragments

The ideas established in the molecular modelling

/ structural biology community  during the 1980s and early 1990s

First reduced to practice by Abbott in SAR by NMR approach in mid 1990s•

Other pharmaceutical companies unable to replicate success

Approaches developed in small pharma

companies in late 1990s / early 2000s•

Astex, Vernalis, Plexxikon, SGX ….. and underground in large pharma

Underpinning concepts developed in the 2000s – complexity, ligand

efficiency

Success has led to increased use•

Different aspects of FBLD  are on different parts of this curve•

And in different organisatiions

Time

Expectation

Technology Trigger

Inflated expectations

Trough of Disillusionment

Slope of Enlightenment

Plateau of productivity

9

Fragments 2013 talk

Summary from 2009•

Where we were 4 years ago

New approaches / ideas for conventional targets•

Screening methods

Off‐rate screening for fragment to hit optimisation

How to approach non‐conventional targets•

What is a non‐conventional target?

Methods for determining binding mode•

Issues –

assays, plasticity, compound properties, 3D

Final remarks

10

Fragments 2013 talk

Summary from 2009•

Where we were 4 years ago

New approaches / ideas for conventional targets•

Screening methods

Off‐rate screening for fragment to hit optimisation

How to approach non‐conventional targets•

What is a non‐conventional target?

Methods for determining binding mode•

Issues –

assays, plasticity, compound properties, 3D

Final remarks

11

SeeDs

process ‐

2008 Structural Exploitation of Experimental Drug Startpoints*

Fragment Library

Target

X-ray Structures

b ca

NMR CompetitiveBinding Experiment

ON

NHN

O

O

NH

N

NH

O

OH

O

NHN

NNH

NH

ONH

NNH

NNH

OHO

NNH

NNH

NH

N

NH

O

O

NH2

O

NHNH

Evolution

Validation Biacore

HSQC

Wet assay / Biacore

*Hubbard et al (2007), Curr Topics Med Chem, 7, 1568

Fragments 2009 talk

12

Finding fragments

Finding fragments that bind is not difficult•

A good way of assessing target “ligandability”

0%

1%

2%

3%

4%

5%

6%

7%

8%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

D score

Cla

ss 1

hits

rate

s

Low hit rates (< 2%)High hit rates (> 2%)

Kinases(3-5% hit rate)

protein-protein interaction(0.4-3% hit rate)

Poor targets

1Calculate druggability

Chen & Hubbard (2009), JCAMD, 23, 603Fragments 2009 talk

Valid

ated

 hit rate

Ligandability

calculated from structure (DScore)

13

Finding fragments

Finding fragments that bind is not difficult•

A good way of assessing target “ligandability”

Low hit rate can indicate difficult to progress•

See also Hajduk (2005) J Med Chem, 48, 2518

0%

1%

2%

3%

4%

5%

6%

7%

8%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

D score

Cla

ss 1

hits

rate

s

Low hit rates (< 2%)High hit rates (> 2%)

Kinases(3-5% hit rate)

protein-protein interaction(0.4-3% hit rate)

Poor targets

1Calculate druggability

Chen & Hubbard (2009), JCAMD, 23, 603Fragments 2009 talk

Valid

ated

 hit rate

Ligandability

calculated from structure (DScore)

14

Using fragments

Growing fragments

Fragments 2009 talk

15

Using fragments

Growing fragments – CHK1 example

Chk-1 IC50 >100µM

LE ~ 0.39

Fragments 2009 talk

16

Using fragments

Growing fragments – CHK1 example

Chk-1 IC50 = 5µM

LE = 0.39

GI50 HCT116 >80µM

pH2AX (MEC) – inactive

Fragments 2009 talk

17

Using fragments

Growing fragments – CHK1 example

Chk-1 IC50 = 0.2µM

LE = 0.33

GI50 HCT116 = 4µM

pH2AX (MEC) = 7µM

Fragments 2009 talk

18

Using fragments

Growing fragments – CHK1 example

Chk-1 IC50 = 0.013µM

LE = 0.39

GI50 HCT116 = 1.8µM

pH2AX (MEC) =0.2µM

Series members further optimised to identify Candidate V158411

Fragments 2009 talk

19

Using fragments

Merging – HSP90 example

Known LigandsVirtual Screening hitsScreen

Detailed Design

Fragments 2009 talk

20

N

N SNH2

O

NH

Cl

Cl

ON

NN

NH2

OOMe

VER-26734FP IC50 >5mM

NN

NH2

SNH

OVER-52959

FP IC50 =535M

Fragment Evolved fragment

HSP90 –

BEP800 story

N

N

N

NH2

Cl

ClN

VER-82576NVP-BEP800

FP IC50 =0.058MKD = 0.9nM (SPR)

HCT116 GI50 =0.161MBT474 GI50 =0.057M

NO

OH

OH

O

NH

N O

NVP-AUY922Vernalis Phase II candidate (FBLD

/ SBDD derived)

VER-41113FP IC50 =1.56M

Virtual Screening Hit

VER-45616FP IC50 =0.9M

SNNH2

NH2N

NH2

O

OEt

Virtual Screening Hit

Brough et al (2009) J Med Chem 52,4794‐4809 Roughley et al (2012) Top Curr

Chem 317, 61

D93 G97 K58

F138L107

Fragments 2009 talk

21

Pin1 Story

Proline

isomerase

persuasive biological rationale that  key oncology target

Structure available + D‐peptide tool compound

Fragments 2009 talk

22

Pin1 Story

Proline

isomerase

persuasive biological rationale that  key oncology target

Fragments identified: fragment to hit evolution•

No correlation between biophysical and enzyme assays

NH

OH

O

H3C

Fragments 2009 talk

23

Pin1 Story

Proline

isomerase

persuasive biological rationale that  key oncology target

Fragments identified: fragment to hit evolution

Issue with over‐binding – multiple copies of fragment  binding to the protein – SPR and Xray

NH

OH

O

H3C

Fragments 2009 talk

24

Pin1 Story

Proline

isomerase

persuasive biological rationale that key  oncology target

Fragments identified: fragment to hit evolution

Issue with over‐binding – multiple copies of fragment binding  to the protein – SPR and Xray

Designed 3D fragment –

progressed multiple series < 100nM  on target showing cellular activity

Potter AJ et al,  Bioorg

Med Chem 

Lett. 2010; 20:586‐590

N

NH

HN

O

O

HO

O

CH3NH

OH

O

H3C

Fragments 2009 talk

25

Fragments 2013 talk

Summary from 2009•

Where we were 4 years ago

New approaches / ideas for conventional targets•

Screening methods

Off‐rate screening for fragment to hit optimisation

How to approach non‐conventional targets•

What is a non‐conventional target?

Methods for determining binding mode•

Issues –

assays, plasticity, compound properties, 3D

Final remarks

26

Optimise fragment

Fragment to hit :SAR by catalogoff‐rate screening

-5

0

510

15

20

25

30

-50 0 50 100 150 200 250 300

RU

Res

pons

e

Time s

-4

-2

0

2

4

6

8

-100 -50 0 50 100 150 200 250 300

RU

Res

pons

e

Tim e s

Characterisation 

X‐ray or NMR  guided model

The Vernalis processHubbard et al (2007), Curr

Topics Med Chem, 7, 1568                       Hubbard and Murray (2011), Methods Enzym, 493, 509

Target

Optimise fragment

Hits

Competitive  NMR screenFragment Library 

~ 1200 compoundsAve MW 190

Design, Build & Test

N

N SNH2

O

NH

Cl

Cl

ON

NO

OH

OH

O

NH

N O

NN

NH2

OOMe

NN

NH2

SNH

O

N

N

N

NH2

Cl

ClN

SNNH2

NH2N

NH2

O

OEt

Virtual screen; literature;  library screen

Screen by SPR, DSF, 

WAC, biochem

or 

binding assay, Xray

Drug?

27

Some comments on fragment screening

For “good”

target sites (many enzymes):•

If assays configured correctly•

Same hits identified by ligand

observed NMR and SPR

validated hits tend to give crystal structures

Careful QC of fragment library –

attention to assay conditions

There can be lots of false negatives from screening by X‐ray•

Requires suitable crystal system

“Wet”

assays can work sometimes•

But high concentrations can confound the assay

Thermal melt methods unreliable

For non‐conventional targets (such as protein‐protein):•

Many issues•

Overbinding, problems due to properties of compounds and target

Cross‐validate binding by different techniques

Hubbard & Murray (2011), Meth Enzymology, 493, 509

28

Leads generated for many Targets

Disclosed targets include:•

Kinases: CDK2, Chk1, PDPK1, PDHK1, Pim1, STK33, Pak4

ATPases: DNA gyrase, Grp78, HSP70 and HSP90•

protein‐protein interaction targets: Pin1 and Bcl‐2

FAAH and tankyrase

Undisclosed targets include:•

kinases

with unusual binding sites

protein‐protein interaction targets•

novel classes of enzymes in large multi‐domain complexes

29

Summary – fragments and conventional targets

Fragment screen to assess targets

Fragments alongside HTS and knowledge‐based•

You always find something new

Fragments to hits for conventional targets is  relatively straightforward

(when crystal structures / good models available)•

The main issues are organisational and cultural•

Discuss !!

Time

Expectation

Technology Trigger

Inflated expectations

Trough of Disillusionment

Slope of Enlightenment

Plateau of productivity

30

Fragments 2013 talk

Summary from 2009•

Where we were 4 years ago

New approaches / ideas for conventional targets•

Screening methods

Off‐rate screening for fragment to hit optimisation

How to approach non‐conventional targets•

What is a non‐conventional target?

Methods for determining binding mode•

Issues –

assays, plasticity, compound properties, 3D

Final remarks

31

Exploiting the dissociation rate constantkoff (s-1)kon (M-1s-1)KD =

James Murray, Steve Roughley, Natalia Matassova

PL                  P      +       Lkoff

kon

32

Exploiting the dissociation rate constant

Cannot improve association rate constant above ~10‐8

M‐1s‐1

No point in drug discovery, too many membranes in the way!

Dissociation rate constant can be infinite (ie

covalent!)

We have seen that it is the key driver of potency•

As have others (review Copeland, Future Med. Chem. 3(12), 2011)

koff (s-1)kon (M-1s-1)KD =

James Murray, Steve Roughley, Natalia Matassova

33

Exploiting the dissociation rate constant

Cannot improve association rate constant above ~10‐8

M‐1s‐1

No point in drug discovery, too many membranes in the way!

Dissociation rate constant can be infinite (ie

covalent!)

We have seen that it is the key driver of potency•

As have others (review Copeland, Future Med. Chem. 3(12), 2011)

Surface plasmon

resonance – a way to measure kinetics•

FOCUS ON THE Off‐RATE ‐

koff

ResonanceSignal (RU)

Dissociation - koff

Asso

ciat

ion

- kon

Kinetics

ConcentrationTime (s)

KineticsKinetics

Time (s)Time (s)Time (s)Time (s)Time (s)Concentration

Time (s)Concentration

Time (s)

James Murray, Steve Roughley, Natalia Matassova

koff (s-1)kon (M-1s-1)KD =

34

Exploiting the dissociation rate constant

Cannot improve association rate constant above ~10‐8

M‐1s‐1

No point in drug discovery, too many membranes in the way

Dissociation rate constant can be infinite (ie

covalent)

We have seen that it is the key driver of potency•

As have others (review Copeland, Future Med. Chem. 3(12), 2011)

Independent of concentration•

Exploit this to assess unpurified

reactions, off‐rate screening (ORS)

James Murray, Steve Roughley, Natalia Matassova

koff (s-1)kon (M-1s-1)KD =

35

Historical Hsp90: thienopyrimidines•

200 nM – 5 M IC50

by FP assay

Re‐prepared compounds by Suzuki reaction

Minimal work‐up•

Evaporate, partition

Purity 50 – 80 % (LCMS)

Screened by ORS

N

N S

Cl

NH2O

ON

N SNH2O

O

RB(OH)2

R

DMF / H2O

NaHCO3

Pd(Ph3P)2Cl2100 ºC Microwave 10 min

Off rate screening (ORS): ExampleJames Murray, Steve Roughley, Natalia Matassova

36

Historical Hsp90: thienopyrimidines•

200 nM – 5 M IC50

by FP assay

Re‐prepared compounds by Suzuki reaction

Minimal work‐up•

Evaporate, partition

Purity 50 – 80 % (LCMS)

Screened by ORS

N

N S

Cl

NH2O

ON

N SNH2O

O

RB(OH)2

R

DMF / H2O

NaHCO3

Pd(Ph3P)2Cl2100 ºC Microwave 10 min

Off rate screening (ORS): ExampleJames Murray, Steve Roughley, Natalia Matassova

A: Pure starting materialB: Faux reaction

37

Historical Hsp90: thienopyrimidines•

200 nM – 5 M IC50

by FP assay

Re‐prepared compounds by Suzuki reaction

Minimal work‐up•

Evaporate, partition

Purity 50 – 80 % (LCMS)

Screened by ORS

N

N S

Cl

NH2O

ON

N SNH2O

O

RB(OH)2

R

DMF / H2O

NaHCO3

Pd(Ph3P)2Cl2100 ºC Microwave 10 min

Off rate screening (ORS): ExampleJames Murray, Steve Roughley, Natalia Matassova

A: Pure starting materialB: Faux reactionC: Purified productD: Crude reaction

38

3UH4Novartis (2012)

Tankyrase

Introduction

Axin

is targeted for turnover through poly‐D‐ribose  labelling

by Tankyrase.  This removes axin, which has a 

role in stabilising

‐catenin

Inhibition of Tankyrase

has been proposed to enhance  the degradation of ‐catenin, an indirect way of affecting 

the WNT‐pathway

Crystal structure of tankyrase

available in 2007

2RF5 Structural Genomics Consortium (2007)

39

Tankyrase

Introduction

Axin

is targeted for turnover through poly‐D‐ribose  labelling

by Tankyrase.  This removes axin, which has a 

role in stabilising

‐catenin

Inhibition of Tankyrase

is therefore proposed to enhance  the degradation of ‐catenin, an indirect way of affecting  the WNT‐pathway

Crystal structure of tankyrase

available in 2007

At Vernalis:•

Initially – low levels of protein production – insufficient 

material for fragment screen by NMR•

Able to produce large numbers of apo‐crystals that 

preliminary trials showed were suitable for ligand

soaking

Alba Macias, Chris Graham and team

40

Tankyrase

Hit identification

Crystals

Soaked fragments in pools of 8

Data collection (up to1.6Å

resolution)

Streamlined structure solution

Characterised by SPR and TSA

62 hits from 1563fragments

Alba Macias, Chris Graham and team

41

Tankyrase

Fragment to hit evolution

The most attractive fragments were not suitable for rapid chemistry

Designed a modified fragment

Off‐rate screening libraries identified vectors and substituents•

Crystals soaked directly with reaction mixtures

Lead Series driven using combinations of tools•

Computational chemistry

X‐ray crystallography•

SPR (ORS), DSF

Medicinal Chemistry

Properties•

5 nM

vs

TNKS2, high ligand

efficiency (0.60)

Affects PD markers in cells (stabilises Axin2, inhibits WNT pathway)

Tools to probe the biology

Alba Macias, Chris Graham and team

42

PDHK – an unusal

kinase

GHKL family protein (like HSP90)

Other companies have targetted

for diabetes•

AZ and Novartis in the 1990s – various allosteric

sites

Vernalis investigated as a cancer metabolism target•

Off‐rate screening to selectively evolve a fragment

E2 / L2 site

AZD‐7545 – 2q8g

Novartis –

2bu5

DCA – 2q8h

ATP site – 2q8i

Pfizer – 2bu7

43

PDHK project

Initial fragment hit for ATP site – also binds to HSP90

Structure shows which vector(s) to explore

Parallel libraries synthesised and screened by SPR•

Using the off‐rate screening method – changes in koff

One SPR channel with HSP90, one with PDHK

Can identify PDHK selective compounds•

And HSP90 selective compounds

Fragment bound 

to PDHK1

HSP90

HSP90

PDHK1

PDHK1

VER‐00236029

VER‐00236030

44

Fragments 2013 talk

Summary from 2009•

Where we were 4 years ago

New approaches / ideas for conventional targets•

Screening methods

Off‐rate screening for fragment to hit optimisation

How to approach non‐conventional targets•

What is a non‐conventional target?

Methods for determining binding mode•

Issues –

assays, plasticity, compound properties, 3D

Final remarks

45

Fragments 2013 talk

Summary from 2009•

Where we were 4 years ago

New approaches / ideas for conventional targets•

Screening methods

Off‐rate screening for fragment to hit optimisation

How to approach non‐conventional targets•

What is a non‐conventional target?

Methods for determining binding mode•

Issues –

assays, plasticity, compound properties, 3D

Final remarks

46

Non‐conventional targets

47

Non‐conventional targets

Can find fragments that bind•

Orthogonal biophysical methods can validate and 

characterise

fragment binding

48

Non‐conventional targets

Can find fragments that bind

Evolution requires robust model of fragment binding

Best model is from X‐ray structure•

But sometimes high affinity ligand

required for structure

49

Non‐conventional targets

Can find fragments that bind

Evolution requires robust model of fragment binding

Best model is from X‐ray structure

NMR methods can provide sufficient quality of model•

Experiments can be filtered to reveal just the interactions 

between protein and ligand

Unfiltered NOESY

- All NOEs

50

Non‐conventional targets

Can find fragments that bind

Evolution requires robust model of fragment binding

Best model is from X‐ray structure

NMR methods can provide sufficient quality of model•

Experiments can be filtered to reveal just the interactions 

between protein and ligand

Unfiltered NOESY

- All NOEs

Filtered NOESY

- Intermolecular NOEs

Protein/ligand

51

Non‐conventional targets

Can find fragments that bind

Evolution requires robust model of fragment binding

Best model is from X‐ray structure

NMR methods can provide sufficient quality of model•

Experiments can be filtered to reveal just the interactions 

between protein and ligand•

Have developed leads from fragments using NMR models

High affinity ligands give X‐ray structures that confirm model

52

Video of Bcl‐2 plasticity

53

Bcl‐2 ‐

ligandability

changes dramatically as ligands explore available  pockets / flexibility

0%

1%

2%

3%

4%

5%

6%

7%

8%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Dscore

Cla

ss 1

hits

rate

s

Low hit rates (< 2%)High hit rates (> 2%)

protein-protein interaction(0.4-3% hit rate)

1 Calculate druggability

Valid

ated

 hit rate

Ligandability

calculated from structure (DScore)

54

Selective Bcl‐2 inhibitor program

Structure‐guided optimisation has generated  selective Bcl‐2 inhibitors

MW < 780; > 100‐fold selective over other BH3

domains•

Sub‐10 nM efficacy in cell models of AML

In vivo, rapid and strong apoptotic response in RS4;11  xenograft models, both iv and oral

Platelet sparing (cf ABT‐263)•

Key was biophysical assays to assess cell penetration 

and compound aggregation

Time after tumour inoculation (days)

Tum

our

volu

mes

(mm

3 )M

edia

n +/

- Int

erQ

uart

ile R

ange

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 390

200

400

600

800

1000

1200

1400

Control (untreated)

Compound 3 50 mg/kgCompound 3 100 mg/kgCompound 4 50 mg/kgCompound 4 100 mg/kg

Treatment schedule (per os)(Twice a week)

ABT-263 50 mg/kgABT-263 100 mg/kg

Geneste, Murray, Davidson, leDiguarher et al

55

Summary ‐

non‐conventional targets

For non‐conventional targets•

And where structures are hard to obtain

It takes time –

and not yet clear how often fragments  can be successful

Integration with biophysical methods can be key•

Also – a commitment to the long haul

Time

Expectation

Technology Trigger

Inflated expectations

Trough of Disillusionment

Slope of Enlightenment

Plateau of productivity

56

Fragments 2013 talk

Summary from 2009•

Where we were 4 years ago

New approaches / ideas for conventional targets•

Screening methods

Off‐rate screening for fragment to hit optimisation

How to approach non‐conventional targets•

What is a non‐conventional target?

Methods for determining binding mode•

Issues –

assays, plasticity, compound properties, 3D

Final remarks

57

Finding fragments ‐

issues

For some targets, it can take time to configure a  robust assay

For fragment screening but also hit progression•

Protein construct, assay conditions, etc, etc

0%

1%

2%

3%

4%

5%

6%

7%

8%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

D score

Cla

ss 1

hits

rate

s

Low hit rates (< 2%)High hit rates (> 2%)

Kinaseshigh hit rate

protein-protein interactiontargets – varying hit rates

Poor targets

1Calculate druggability

Updated from Chen & Hubbard (2009), JCAMD, 23, 603

Valid

ated

 hit rate

Ligandability

calculated from structure (DScore)

58

3D fragments

Most of the compounds in fragment libraries are  commercially available small molecules

Medicinal chemist emphasis on chemical tractability•

Some use privileged fragments from existing drugs

Most of the fragments are flat heterocycles•

This is fine for some targets (kinases, ATPases)

Perhaps limiting for other (new) target classes

Some initiatives underway to introduce more 3D  fragments

The challenge will be synthetic tractability•

A York initiative

59

York 3D fragments

Peter O’Brien has developed chemistry for adding  lithiated

N‐Boc

heterocycles

2

(formed from 1) to 

heterocyclic, symmetrical ketones

The resulting fragments have distinctive 3D  shapes, presenting useful looking 

pharmacophores•

Shape measured by principle moments

0.50.550.6

0.650.7

0.750.8

0.850.9

0.951

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

York fragmentsrod sphere

disc0.5

0.550.6

0.650.7

0.750.8

0.850.9

0.951

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vernalisrod sphere

disc

60

York 3D fragments

Peter O’Brien has developed chemistry for adding  lithiated

N‐Boc

heterocycles

2 (formed from 1) to 

heterocyclic, symmetrical ketones

The resulting fragments and lead‐like compounds  have distinctive 3D shapes, presenting useful 

looking pharmacophores

Project underway to explore the chemistry•

Generate 500 member library

See how it performs against various targets

61

Concluding remarks

Straight forward to find fragments for most sites on most proteins•

Opportunities for new “3D”

fragments?

The challenge is knowing what to do with the fragments•

Off‐rate screening allows exploration of vectors

Evolving fragments in absence of structure?

For conventional targets•

Lots of starting points; opportunity for “good”

medicinal chemistry

Issue in some organisations is integration with medicinal chemistry

For non‐conventional targets•

Provides starting points when other techniques fail

Close integration with biophysics is crucial; takes time and commitment

Not necessarily faster – patience required•

But hopefully better

62

End

References in the slides acknowledge who did the work

FBLD conference•

2008 – San Diego

2009 – York•

2010 –

Philadelphia

2012 – San Francisco•

2014 – Basle 

http://www.fbldconference.org

63

Vernalis Research Overview•

Approximately 60 staff in research•

Based in Cambridge, UK (Granta

Park)

Recognised for innovation and delivery in structure and  fragment‐based drug discovery

Structure‐based drug discovery since 1997•

Distinctive expertise combining X‐ray, NMR, ITC and SPR to 

enable drug discovery against established and novel, challenging targets 

Portfolio of discovery projects•

Six development candidates generated in the past six years

Protein structure, fragments and modelling integrated with  medicinal chemistry

Internal Vernalis projects in oncology•

Collaborations across all therapeutic areas•

e.g. oncology, neurodegeneration, anti‐infectives

Aim to establish additional collaborations during 2013 / 14

Recommended