Proceedings Thursday 14th April

Preview:

DESCRIPTION

Proceedings Thursday 14th April - The 16th North Sea Offshore Crane and Lifting Conference.

Citation preview

Program part oneThursday 14th April, last day

Morning session Chair: Arnold de GrootHeadline: Wire Rope 

08:30  Innovative fatigue test methods for the evaluation of wire ropes service life andperformance under heavy duty offshore applications Ronen Ashkenazi

09:15  Non‐destructive testing of large diameter steel wire ropes with intros instruments    Dmitry Slesarev

10:00  Coffee / CraneExpo

10:15  Case study on the application of rope installation, examination, maintenance anddiscard criteria for the offshore wind energy sector,  Sara Fletcher

10:45  Non ‐ destructive magneto‐inductive rope testing, Olivier Gronau

Wednesday 13th April

Table of Contents,  Thursday 14th April

Innovative fatigue test methods for the evaluation of wire ropes service life and performance under heavy duty offshore applications Ronen AshkenaziNon‐destructive testing of large diameter steel wire ropes with intros instruments,  Dmitry SlesarevCase study on the application of rope installation, examination, maintenance and discard criteria for the offshore wind energy sector,  Sara FletcherNon ‐ destructive magneto‐inductive rope testing, Olivier GronauKeynote speaker by invitation : Mr. Roland Verreet,Lecture: About consultants, test machines and wire rope failures

Page 3

Page 24

Page 42

Page 61Page 91

Innovations in training, risk mitigation through virtual simulation based on lessons learned from Us military & aviation industries, Troy “Korn” KehoeCompetence‐upgrading: inspection and service of cranes and davits, Ian McCurdie, CanceledDesign and implementation of effective simulation‐based training curriculum for  offshore lift crew training, Arnold FreeClosing/adjourn Svein Anders Eriksson, Chairman of the organisingcommittee. 

Page 93

Page 116

Page 117

Page 146

Speaker

Ronen Ashkenazi, M.R.E. Matron Rope & Wire Rope Engineering LTD, ISR

Lecture: Innovative fatigue test methods for the evaluation of wire ropes service life and performance under heavy duty offshore applications

Background: He is the technical manager and owner of M.R.E Matron Rope & Wire Rope Engineering. He was conducting the Ph. D degree at the Department of Mechanical Engineering Technion – Israel Institute of Technology Technion City –

Haifa: The Mechanical Behavior and Fatigue Life of Wire Ropes

Innovative Fatigue Test Methods for The Evaluation

of Wire Ropes Service Life and Performance Under

Heavy Duty Offshore Applications

Dr . Ronen AshkenaziDr . Ronen Ashkenazi

M.R.E. Matron Rope & Wire Rope Engineering LTD

The 16th North Sea Offshore Crane and Lifting Conference

12th – 14th April 2011

M.R.E. MATRON Rope & Wire Rope Engineering LTD

Contents

1. The need of the end user: comparing between ropes: decision

2. Loading cycle definition

3. Reverse bending with fluctuating dynamic tension

4. Rope degradation process

5. Results and conclusions

M.R.E. MATRON Rope & Wire Rope Engineering LTD

The need for the testing and evaluating rope

performance

In specific high demand applications the rope performance and

service life is a critical parameter and may have a considerable

impact on operation, maintenance and production costs

M.R.E. MATRON Rope & Wire Rope Engineering LTD

The need of the end user:

• Reliable rope:

A rope which will under fair machine and maintenance conditions will

provide reasonable service life

• Detectable predicted and understandable deterioration process with no

surprises (internal breaks, strand contacts )

• Economical Reasonable costs

• Repeatability product performance

M.R.E. MATRON Rope & Wire Rope Engineering LTD

The need of the end user:

• To have a technical based decision with regard to the

selection of the rope type and supplier.

• To reduce risks and potential costs in new rope trials.

• To follow on rope quality in supply

• Characterize the specific rope deterioration process• Characterize the specific rope deterioration process

- Core deterioration: internal breaks

- Strand contact breaks

- Diameter reduction during service: abrasion + core radial contraction

- Rope elongation

- outer breaks

M.R.E. MATRON Rope & Wire Rope Engineering LTD

An example of a project:

Comparison between ropes performance for

specific heavy duty grab crane

The application:

A grab crane 45 ton : payload 30 ton

2 sets R & L 38 and 40 mm closing and hoisting ropes IWRC2 sets R & L 38 and 40 mm closing and hoisting ropes IWRC

Drum: One layer

D/d= 40, speed= 3 m’/sec

Working 22 hours a day, 3 shifts

Reasonable service life :

1.5 E 6 Ton 60,000 loading cycles

M.R.E. MATRON Rope & Wire Rope Engineering LTD

M1 M2 M3

M.R.E. MATRON Rope & Wire Rope Engineering LTD

Loading cycle

13 Ton

F

Loading

זמן

0 Ton

4 Ton

Un loading Initial loading

M.R.E. MATRON Rope & Wire Rope Engineering LTD

Loading cycle of the closing ropes

13 Ton

F

Un loading

Loading

Initial loading

Grab closing

5 Ton

Initiation of

bending

Assumption: during closing the closing rope will share: 65% of the load

t

0 Ton

4 Ton

bending

M.R.E. MATRON Rope & Wire Rope Engineering LTD

M.R.E. MATRON Rope & Wire Rope Engineering LTD

3 different segments

M.R.E. MATRON Rope & Wire Rope Engineering LTD

Loading cycle of the closing ropes

Control parameters

1. Initial loading before travelling/bending: closing load

2. Speed

3. Acceleration, deceleration rate

4. Loading rate4. Loading rate

5. Maximal load: 2% accuracy

6. Load after un- loading: empty grab weight

7. Delays at the end of trip

Load control: load cell installed at the rope termination

M.R.E. MATRON Rope & Wire Rope Engineering LTD

1 2 3 4 5

M.R.E. MATRON Rope & Wire Rope Engineering LTD

Test program includes

Compacting level Core construction

A B C

Plastic layer

Lubricant

Diameter 38 mm & 40 mm Initial diameter

M.R.E. MATRON Rope & Wire Rope Engineering LTD

Confidentiality with regard to rope

Supplier and construction

Test program includes:

•Rope were not lubricated during the test:

• Sheaves were re-grooved after each testing

• Similar loading conditions :

Stroke control , speed control , de/acceleration

Load control

Measurements during testing :

• Elongation during cycling

• Broken wires: Visual and MRT

• Diameter

• Deterioration rate along the different rope segments

M.R.E. MATRON Rope & Wire Rope Engineering LTD

M.R.E. MATRON Rope & Wire Rope Engineering LTD

No. of broken

wires over 6d and

30 d

10

12

14

Cycles*10004

2

4

6

8

1

8 6 10 12 14 16 18 20

Rope ARope B

Rope C

M.R.E. MATRON Rope & Wire Rope Engineering LTD

Results and conclusions

3 different ropes were tested under similar loading cycle and conditions

1. Different rope deterioration process and rates were observed

2. Lubricants have a major impact on fatigue life

3. Core structure and plastic layer considerably influence service life

4. A correlation between rope deterioration and elongation was

observed

4. Wire coating and compacting level have considerable impact on

fatigue life of the individual wire: crack initiation process

5. Different elongation rate and levels were observed

6. Good agreement between laboratory tests and filed experience

M.R.E. MATRON Rope & Wire Rope Engineering LTD

• The testing under real application loading is necessary

and provides reliable results with regard to rope

performance under the specific application.

• Test must includes all machine/rope interfaces and

dynamics

M.R.E. is focusing on the design of testing rigs to simulate

the real loading conditions:

Deep mining (Koepe & Drum), mooring lines, heavy duty

cranes, high rise elevators, aerospace & space applications

M.R.E. MATRON Rope & Wire Rope Engineering LTD

Testing at the wire level:

Understanding rope mechanics

under the specific loading

Strain and stress measurements

along individual wires during cyclic

Rotation + TT loading

M.R.E. MATRON Rope & Wire Rope Engineering LTD

Speaker

Dmitry Slesarev, INTRON PLUS, RULecture: Non‐destructive testing of large diameter steel wire ropes with Intros 

instruments

Background: Dmitry Slesarev, PhD, R&D Director of “INTRON PLUS”, developedseveral diagnostic software systems, also system for wire rope deterioration

assessment

Non-destructive testing of large diameter steel wire ropes with

Intros instruments

Slesarev D., Vorontsov A.INTRON PLUS, Russia

Magnetic non-destructive testing of wire ropes

• Reflected in industrial regulations and codes, for example: BS EN 12927-2004, ASTM 1571, IMCA SEL 023 IMCA M 197

• Large experience for more than 30 years• Conventional applications: mining industry,

ropeways, cranes, cable-stayed structures

Application of magnetic rope testing in lifting facilities

Testing of hoist ropes in the paper mill

Off-shore applications

Oil & Gas platforms Vessel cranes

Off-shore applications

Inspection of off-shore crane rope by Sakhalin

MFL principle of operation

Sensors measure magnetic flux leakage, caused by material discontinuity

LMA and LF charts

Rope chart of some heavy duty shaft rope

Distribution of LMA and LF of the shaft rope during 3 consecutive inspections

Calculation of Rope’s Safety Factor

The calculation is based on:• Rope diameter and construction• Nominal rope load and loading conditions

(tension with/without twisting, bending) • Distribution of LMA and LF over the length

of the rope

Distribution of Safety Factor of the Shaft Rope during 3 Consecutive

Inspections

Degradation of Safety Factor with a Time vs. Loading Cycles

Degradation of Relative Strength with a Time vs. Loading Cycles

Effect of Broken Wire Location on Residual Strength for Different Rope

Constructions

Rotation-resistant multi-strand rope

Non rotation-resistant hoisting rope

Strength loss depending on failure location and operating condition

22.17.910.86.37.3PYTHON 8F7K N 8x25+IWRC(1x7+6x7)

10.63. 28.06.27.0DIEPA 1315 CZ 15x7-6x26/6x7+IWRC(1x25)

Core wires

breaks

Outer wires

breaks

Core wires

breaks

Outer wires

breaks

Tension with RotationTension

Loss of Strength, %

Loss of Metallic Area, %

Rope

ConclusionActual safety factor depends considerably on failurelocation and operation condition of the rope.

Intros magnetic rope testing instruments

MH 6-24 MH 20-40

MH 24-64

MH 60-85 MH 80-120MH 100-150

Intros Instruments for Big Diameter Wire Ropes

0.12Sensitivity limit to an outer broken wire, % (relativeto cross-section area)

2.0Precision of LMA measurement, %

0.2 – 1.5Speed of rope under inspection, m/s

60 – 8580 – 120

100 – 150Range of rope diameters, mm

Thank you!

www.intron-plus.com

Speaker

Sara FletcherBridon International Ltd

Lecture: Case study on the application of rope installation, examination, maintenance and discard criteria for the offshore wind energy sector

Background: Attained  Bachelor Degree in Mechanical Engineering in 1993, then joined Bridon during which time has led the Technical Sales function for floating production moorings and deepwater deployment ropes. Currently responsible for 

development of rope technology needs for deepwater offshore applications. 

Practical Application of Examination, Maintenance & Discard of Wire Rope

16th North Sea Offshore Cranes and Lifting ConferenceStavanger Forum

12th – 14th April 2011

Sara Fletcher – Technical Development Manager Mike Bramley – Service Manager

Bridon International

Agenda

• Wire Rope Integrity• Product Selection for Equipment optimisation• Installation• Examination • Discard• Practical considerations

What is Wire Rope Integrity?

Methods to ensure:• Through life safety of wire rope.• Specification & Installation.• Inspection & Examination.• Post retirement review. • Feedback.• Transparency & clarity of records.

Objective: • Confidence in equipment for reliable operations. 

Rope Selection

• Application:– Simple single load case– Multi‐reeved crane– Single fall large capacity crane– Traction winches– Heave compensation

• Requirements:– Load transfer– Tension Fatigue– Bending– Bend Fatigue– Rotation– Flexibility– Etc..

Specification requirements

Rope properties:Rope classification / Construction DiameterLengthTolerancesInternational standard specifications

Installation: Packaging EquipmentTension 

Application: SWLTerminationsSheave dimensions & profilesFleet anglesGripping forces

Not a total list!

Installation

• Correct installation of the rope will have a positive effect on wire rope performance

• Poor installation of the rope will have a negative effect on the rope performance.

Grooved drum systems aid good spooling

Installation

• Correct installation of the rope will have a positive effect on wire rope performance

• Apply back tension to the rope during installation:– at least 2% of the Minimum Breaking Load– or up to 25% of working tension (as training load)

• Training of large diameter complex rope constructions:– deploy in deep water – Cycle to remove construction effects

• Training the rope to optimise rope performance• Reflect back to rope selection 

– Define dimensional tolerance– Understand compressibility: Axial and radial

Lifetime Integrity Methodology

The following five methodologies can be applied to provide wire rope integrity assurance:

• automatic discard (replacement) after a set period, • thorough examination and inspection;• non‐destructive examination;• destructive tensile testing; and• a range of post‐retirement activities which will provide feed‐back into the 

integrity management system.

From IMCA M 194 Guidance on Wire Rope Integrity Management for Vessels in the Offshore Industry

Integrity Methodology ‐ Discard

The following five methodologies can be applied to provide wire rope integrity assurance:

• automatic discard (replacement) after a set period, • thorough examination and inspection;• non‐destructive examination;• destructive tensile testing; and• a range of post‐retirement activities which will provide feed‐back into the 

integrity management system.

From IMCA M 194 Guidance on Wire Rope Integrity Management for Vessels in the Offshore Industry

Visual Inspection

Integrity Methodology ‐ Discard

The following five methodologies can be applied to provide wire rope integrity assurance:

• automatic discard (replacement) after a set period, • thorough examination and inspection;• non‐destructive examination;• destructive tensile testing; and• a range of post‐retirement activities which will provide feed‐back into the 

integrity management system.

From IMCA M 194 Guidance on Wire Rope Integrity Management for Vessels in the Offshore Industry

NDE

LMA trace, %

171615141312

4.0

3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0

-4.0

LF trace, mV

171615141312

40.0

30.0

20.0

10.0

0.0

-10.0

-20.0

-30.0

-40.0

Integrity Methodology ‐ Discard

The following five methodologies can be applied to provide wire rope integrity assurance:

• automatic discard (replacement) after a set period, • thorough examination and inspection;• non‐destructive examination;• destructive tensile testing; and• a range of post‐retirement activities which will provide feed‐back into the 

integrity management system.

From IMCA M 194 Guidance on Wire Rope Integrity Management for Vessels in the Offshore Industry

Integrity Methodology ‐ Discard

The following five methodologies can be applied to provide wire rope integrity assurance:

• automatic discard (replacement) after a set period, • thorough examination and inspection;• non‐destructive examination;• destructive tensile testing; and• a range of post‐retirement activities which will provide feed‐back into the 

integrity management system.

From IMCA M 194 Guidance on Wire Rope Integrity Management for Vessels in the Offshore Industry

Integrity Methodology ‐ Discard

The following five methodologies can be applied to provide wire rope integrity assurance:

• automatic discard (replacement) after a set period, • thorough examination and inspection;• non‐destructive examination;• destructive tensile testing; and• a range of post‐retirement activities which will provide feed‐back into the 

integrity management system.

From IMCA M 194 Guidance on Wire Rope Integrity Management for Vessels in the Offshore Industry

Discard

• International Standard ISO 4309• Considers the application:

– Bend fatigue driven– Surface contact damage

• Considers the rope construction• Training & Competence

Risk Management

• Single Broken Wire:– Probability = high– Impact = low

• Broken rope – Probability = low– Impact = high

Rope integrity = Confidence in equipment for reliable operations. 

Risk = probability x impact

• Multiple Broken Wires in a similar location:– Make probability of identification – high– Repair  / Replace– Prevent– Make probability of it becoming a failure = low

• Maintenance & competence = reduction in Risk

Summary

• Rope Integrity Management is Risk Management• Increased Competence & Maintenance reduces risk.• Use all the tools practically available. • Feed back !• Objective to ensure confidence in rope & equipment for 

reliable, safe, economic operations. 

Thank you

FletcherS@bridon.comBramleyM@bridon.com 

Speaker

Olivier Gronau, Rope Testing Centre‐DMT GmbH & Co. KG, DE

Lecture: Non – destructive magneto‐inductive rope testing

Background: Studies at the “Otto‐von‐Guericke‐University” in Magdeburg.Final degree in 1986 as a Dipl.‐Ing. for materials engineering and testing.Since 2000 a personal accredited expert for the German mining industry.

Present position as the head of the accredited laboratory for non‐destructive and destructive testing ‐rope testing centre‐ in Bochum, Germany

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 1

Non-Destructive Magneto-Inductive Rope TestingOlivier Gronau & Michael LeeskerDMT GmbH & Co. KG

DMT-Prüflaboratorium für Zerstörungsfreie und Zerstörende Prüfung -Seilprüfstelle-(DMT Testing Laboratory for Non-Destructive and Destructive Testing -Rope Testing Centre-)

Breaking Load Reduction as a Function of the Damaged Outer Wires

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40

Breaking Load Reduction [%]

Num

ber o

f Dam

aged

Out

er W

ires

per S

tran

d(w

ithin

Tra

nsve

rse

Mic

rose

ctio

n)

15 % LMA12 % LMA10 % LMA 8 % LMA

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 2

Non-Destructive Magneto-Inductive Rope Testing

Agenda

NDT Techniques for Rope Inspection

History of MRT-Systems

Data Collection and Graphical Representation

Interpretation of MRT Results

Examples of MRT within the Offshore Industry

Conclusion

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 3

NDT Techniques for Rope Inspection

Visual Testing Magneto-InductiveTesting

Ultrasonic &Magnetic Particle Testing

• coating condition• corrosion and wear• broken or cracked outer wires • mechanical distortions or damages

• broken and/or cracked outer andinner wires (LF)

• loss of metallic cross section area(LMA)

• wire breaks/cracks and corrosion at the outer layer of fully-locked ropes and parallel wire bundles

• wear and cracks within the anchorages, such as bolts and latches

• damages of all wires within the critical area at the sockets of parallel wire bundles

+ Haptic Testing

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 4

Non-Destructive Magneto-Inductive Rope Testing

Agenda

NDT Techniques for Rope Inspection

History of MRT-Systems

Data Collection and Graphical Representation

Interpretation of MRT Results

Examples of MRT within the Offshore Industry

Conclusion

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 5

History of MRT-Systems

The -Rope Test Centre- was founded in Bochum in 1903 as a part of the "Westfälische Berggewerkschaftskasse".

Electromagnetic Testing since 1931 Test Set-Up:

- 2 DC coils á 1600 windings- 1 measuring coil á 100 windings

- Galvanometer with optics for the enlargement of the pointer deflection

Practical Application:- constant velocity of the rope- inspection time approx. 6 hours per rope

A. Otto: Elektromagnetisches Verfahren zur Prüfung von Drahtseilen;

Glückauf 69 (1933), S. 471 - 475

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 6

Replacement of DC coils by yoke coils

Use of a flying spot line recorder

- D. van der Velden und H. T. VossenEin Gerät zum Prüfen von Drahtseilen auf elektromagnetischem WegeGlückauf 92 (1956) S. 792 bis 794

Use of differential coils

Use of a distance counter

Velocity independent signal amplitude

- H. GrupeEntwicklung einer Einrichtung zur Prüfung von Förderseilen nach demmagnetinduktiven VerfahrenForschungsberichte des Landes Nordrhein-Westfalen Nr. 954, 1961

History of MRT-Systems

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 7

History of MRT-Systems

Replacement of the yoke coils by permanent magnets (middle of the 60s)

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 8

History of MRT-Systems

Replacement of the yoke coils by permanent magnets (middle of the 60s)

Measuring of the loss of metallic cross section area (middle of the 80s)

Use of rare earth magnets (beginning of the 90s)

Visual rope diameter measuring for research purposes

Industry PC based data acquisition device (middle of the 90s)

- Digital signal records on PCMCIA memory card

Use of Hall effect sensors (end of the 90s)

For ropes of parallel strands a new rope testing instrument is developed in a joint venture with the EMPA* at the moment

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 9

Non-Destructive Magneto-Inductive Rope Testing

Agenda

NDT Techniques for Rope Inspection

History of MRT-Systems

Data Collection and Graphical Representation

Interpretation of MRT Results

Examples of MRT within the Offshore Industry

Conclusion

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 10

Data Collection and Graphical Representation

Quantitative determination of wire breaks Qualitative determination of corrosion and/or

abrasion

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 11

Data Collection and Graphical Representation

Original trace of wire breaks Software for determination ofwire break density

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 12

Data Collection and Graphical Representation

Wire Break Density of a 52 mm Rope (6x35 WV)

0

2

4

6

8

10

12

14

16

10 60 110 160 210 260 310 360 410 460 510 560 610 660 710 760 810 860 910

Rope Length above the Cage [m]

Max

. Mire

Bre

ak D

ensi

ty w

ithin

th

e R

efer

ence

Len

gth

of 1

,56

m

test date: 24.02.2005test date: 25.05.2005test date: 08.08.2005

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 13

Data Collection and Graphical Representation

Quantitative determination of corrosion and/or abrasion

Qualitative determination of wire breaks, partly also quantitative at outer wire breaks

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 14

Data Collection and Graphical Representation

Original trace of heavy corrosion Software for determination of LMA

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 15

Data Collection and Graphical Representation

LMA-Test Results on a 3-Layer Flat Strand Rope

0

2

4

6

8

10

12

14

0 200 400 600 800 1000 1200

Rope Length above the Eastern Skip [m]

LMA

[%]

.

test date: 14.08.2004

test date: 06.02.2005

test date: 26.06.2005

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 16

Non-Destructive Magneto-Inductive Rope Testing

Agenda

NDT Techniques for Rope Inspection

History of MRT-Systems

Data Collection and Graphical Representation

Interpretation of MRT Results

Examples of MRT within the Offshore Industry

Conclusion

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 17

Interpretation of MRT Results

Discard criteria are defined in different standards (DIN 15020 / ISO 4309)

Number and nature of broken wires

Rate of increase of wire breaks

Localized grouping of wire breaks

Reduction of rope diameter

External and internal wear / corrosion

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 18

Interpretation of MRT Results

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 50 100 150 200 250 300 350 400 450 500

Gap between wire ends [mm]

LMA

[%]

Coil-SensorHall-Sensor

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 19

Interpretation of MRT Results

LMA trace, %

1716151413

1,0

0,0

-1,0

-2,0

-3,0

-4,0

-5,0

Calibration Signals

LF-Coil 1

LF-Coil 2

LF-Coil 1 + Coil 2

LMA

+

-

Coil-Sensor Hall-Sensor

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 20

Interpretation of MRT Results

centre and acceleration areaof a rope

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 21

Interpretation of MRT Results

Breaking Load Reduction as a Function of the Damaged Outer Wires

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40

Breaking Load Reduction [%]

Num

ber o

f Dam

aged

Out

er W

ires

per S

tran

d(w

ithin

Tra

nsve

rse

Mic

rose

ctio

n)

15 % LMA12 % LMA10 % LMA 8 % LMA

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 22

Non-Destructive Magneto-Inductive Rope Testing

Agenda

NDT Techniques for Rope Inspection

History of MRT-Systems

Data Collection and Graphical Representation

Interpretation of MRT Results

Examples of MRT within the Offshore Industry

Conclusion

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 23

Examples of MRT within the Offshore Industry

During the production

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 24

Examples of MRT within the Offshore Industry

During the installation on site

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 25

Examples of MRT within the Offshore Industry

During the service inspection

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 26

Non-Destructive Magneto-Inductive Rope Testing

Agenda

NDT Techniques for Rope Inspection

History of MRT-Systems

Data Collection and Graphical Representation

Interpretation of MRT Results

Examples of MRT within the Offshore Industry

Conclusion

www.dmt.deApril 14th 2011 | The 16th NSOCLC in Stavanger 2011 | Slide 27

Conclusion

MRT is an additional tool for rope testing

Inner damages can be determined quantitatively

MRT + VT are necessary for the determination of the

deterioration

Information about service time and periodic MRT are

required for a lifetime assessment

www.dmt.deApril 2010 | Vorlagen Präsentationsfolien | Folie 28

We Look Forward to Your Questions!

Your Contact Person:

Olivier GronauMining Service / -Rope Testing Centre-

DMT GmbH & Co. KGDinnendahlstrasse 9D-44809 Bochum, GermanyPhone +49 234 957 157-52Fax +49 234 957 157-50Mobile +49 170 5657 663Olivier.Gronau@dmt.de

Member of TÜV NORD Group

Program part twoThursday 14th April, last day

Wire Rope continuous Chair: Chair: Arnold de Groot

11:15 – 12:15 NB see time change 

Keynote speaker by invitation :Mr. Roland VerreetLecture: About consultants, test machines and wire rope failures

12:15‐ 13:00 Lunch

Speaker

Roland Verreet, Wire rope Technology Aachen

Lecture: About consultants, test machines and wire rope failures

Background: Diploma engineer University of Aachen, Germany. Working in the wire rope industry since 36 years and 26 years as a self‐employed consultant

Program part threeThursday 14th April, last day

Afternoon session Chair: Kevin MurdochHeadline: Human Factors and Training 

13:00  Innovations in training, risk mitigation through virtual simulation based onlessons learned from Us military & aviation industries, Troy “Korn” Kehoe

13:45  Competence‐upgrading: inspection and service of cranes and davits, Ian McCurdie

14:15 Design and implementation of effective simulation‐based training curriculum for offshore lift crew training, Arnold Free

15:00 Closing/adjourn Svein Anders Eriksson, Chairman of the organising committee. 

15:30  Bus to the airport

Speaker

Troy Kehoe, Check 6, USLecture: Innovations in training, risk mitigation through virtual simulation based on 

lessons learned from US military & aviation industries

Background: He is an engineering graduate of the University of Southern California with an advanced degree in Aviation Safety. He has proudly served in the United States Marine Corps as a combat AV‐8B Harrier pilot, flew internationally for American Airlines, and served on the pilot training team for Lockheed Martin’s Joint 

Strike Fighter Program. 

Innovations in Training

“Try not to have a good time…this is supposed to be educational”

Charles Schulz

The Check 6 Culture Next Generation Training Challenges F22 Lessons Learned Instructional Systems Design Gaming Evolution Human “Innovations”◦ Human Factors◦ CRM◦ Checklist Discipline◦ Leadership

“Check6”isatermfighterpilotsusetodescribecheckingyourwingman’smostvulnerablelocation,wheretheycannotsee…behindtheiraircraft…theirsixo'clock.A

culturedefinedby:

LeadershipTeamworkPerformance

SafetyTraining

Thesametechniquesthatallowhumanstomasterthisenvironment….…

……Definitivelyallowthemasteringofyourenvironment.

• CombatSeasonedFighterPilots• TOPGUNTrained• SpecialForcesOperative• TrainingSystemsDevelopmentExperts• DiverseCorporateExperience• OilPatchExperience• DynamicSpeakers

Chico, TX

• AV‐8BHarrierPilot• AviationSafetyOfficer•MAWTSGraduate• F‐35TrainingSystems&SimulatorTestPilot• AmericanAirlinesPilot• UniversityofSouthernCalifornia

Troy“Korn”Kehoe

• TechnologicalAdvances• CrewTurnoverRate• ThroughputRequirements• DefiningProficiency• DecayAnalysis(Currency)• EmergencyProcedures• InitialTrainingvs.ContinuationTraining

• HumanFactors• DiverseEducationalDemographic

• Multi‐CulturalTraining

TrainingTask List

Conditions

Standards of Performance

Decay Analysis Currency Initial

TrainingRecurrent Training

Continuation Training

Media Analysis

What media will achieve

LO?

Do we need Simulation?

Level of Fidelity

Proficiency Metrics

Immersive Environments are important!◦ Conditions and Standards define Simulation

Requirements Higher Frequency Training = Portable◦ Remote Training at the work site Rehearse critical jobs Review Response to Emergencies in Immersive

Environment Team Training is Essential Look to Gaming

“Imagination is more important than knowledge.”

Albert Einstein

(9X)

IncidentViolation

Fatality

Hazard

Accident

LuckySafe

EffectiveEfficient

PrecisePerfect

Precision Operations are Inherently Safe!

Situational Awareness Assertiveness Decisiveness Communication Leadership Adaptability / Flexibility Mission Analysis

Technology Solution◦ Training cannot be an afterthought◦ “Entertrainment” – Next Generation Learning

Environment◦ Training frequency should be measured in days –

Not Years! Human Solution◦ Phenomenal Leadership at all levels◦ Arm yourself with knowledge◦ Adopt a Checklist Discipline Culture◦ Stop targeting safety as the goal!

CanceledIan McCurdie, Hytek A/S, UK

Lecture: Competence‐upgrading: Inspection and service of cranes and davits

Speaker

Arnold Free, CMLabs / Vortex, Montreal, CALecture: Design and implementation of effective simulation‐based training 

curriculum for offshore lift crew trainingBackground: He has earned his Ph.D. in Engineering from Cambridge University, 

UK and draws on nearly 30 years of engineering and software experience in simulation, training and operations planning. He has helped organizations navigate how they use simulation technology to improve safety and better business practices

The work is simulated. The skills are real.

If you believe training is expensive.

Try ignorance!

An evidence-based approach to simulation-driven lift planning and

learning.

A brief look at how simulation can transform processes in the offshore lift industry.

How do we create effective learning organizations?

Look at the empirical evidence.

Myth.

People learn through different training styles.

Evidence.

There is no evidence that we learn through different styles (auditory,

visual, etc).

There is strong evidence we learn by doing.

Myth.

We learn best through formal/structured programs.

Evidence.

There is no evidence that we best learn through formal training

methods.

There is strong evidence that skills retention is better with informal

and repetitive learning.

Myth.

Information = knowledge.

Evidence.

Learning methods that provide information through presentations (with

instructor or via elearning) are less effective – telling is not learning.

There is strong evidence that learning effectiveness is much higher when

the student is actively engaged in problem solving.

Myth.

Practice makes perfect.

Evidence.

Practice is important when learning skills, but practice alone is not

what really matters and practicing incorrect behaviour can have a

very negative impact.

What makes the difference to effective learning is planning, doing

and corrective feedback.

Simulation can help the Learning Organization

Delivering consistent training based on proven methods.

Involving complete processes, operations and teams.

Fostering inquiry, dialogue and review.

Building continuous awareness of, and interaction with the

environment through repetition.

About Vortex Training Solutions

Vortex creates engaging virtual environments to enhance preparedness, performance and mission outcome for critical equipment operations.

Vortex - simulation leadership in Europe

PNI Training - Norway BAE Systems - UK Lego - Denmark

Babcock - UK Subsea7 - UK John Deere - Finland

Examples.

Simulation assists in many areasEngineering – understanding machine performance, operations behaviour, ergonomicsOperations planning – lift planning, equipment coordination, access studyMission preparation – process documentation, mission rehearsal, mission briefingTraining – skills development, certification and testing, crew resource management

To be effective

Require common tools and processes that support the sharing of assets – engineering builds a simulation that can be loaded into a simulator for training Scalable technology – from web to desktop to immersiveFidelity is critical – risk of negative training, poor prediction of outcomes

Use Case: Lift planning

Experimentation, understanding the environment, planning safe lifts, communicating procedures

Use Case: Equipment systems awareness

Machine systems are complex, many configurations, understanding hydraulic and electrical systems

Use Case: Lift crew team-training

Built around OMHEC training guidelines.Teamwork can not be taught in a classroom

Job planning and toolbox talkFull mission, team‐based training solutions for the operator, signalman and riggerTandem lifts with two cranesIntegrated inspection trainingAfter action team review

Use Case: Project life-cycle training

Continuous training through‐out the life of the projectTesting lift plans in advance

Use Case: Augmented reality

Combine the real and the virtual for task support

Use Case: Integrated task training

Crane configuration and load management system training

Use Case: Inspection and situational awareness

Machine or site walk around, load and lifting gear inspection

Is simulation-based training effective?

The evidence is very clearRecent study in several industries – simulation‐based training was found to be effective and recommended for on‐going or expanded use in all casesRecent Vortex survey of operators and instructors (about 300 individuals surveyed) who had used simulators

87% of instructors stated that simulation based training was very effective at skills development 75% of operators stated they would find it extremely useful to practice in a simulator before performing a lift or learning new procedures

Essential Elements of Effectiveness

Delivering consistent training throughout project teams and lifecycle – engineering,

planning, operations.

Involving complete processes, operations and teams.

Fostering inquiry, dialogue and review.

Building continuous awareness of, and interaction with the environment through

repetition.

Thanks.

The work is simulated. The skills are real.

Speaker

Svein Anders Eriksson, Discipline leader, 

Petroleum Safety Authority, NO

PTIL/PSA

Closing/ ajourn

Svein Anders Eriksson Discipline leader

Logistics and Emergency Preparedness, PSA Norway

svein.eriksson@ptil.nowww.ptil.no

12th – 14th April 2011

The 16th North SeaOffshore Cranes and Lifting Conference 

PTIL/PSA

What have we covered during theconference?

• Regulatory focus areas• Improvements and new technology• Heavy lifting• Maintenance and inspection• Wire ropes• Human factors and training

PTIL/PSA

Have we managed to…..

• Share best practice and experience with colleagues in the industry?

• Create new relations and renew old?• Provide for increased safety awareness?

• Here are my hopes:

PTIL/PSA28/04/2011

4

Today’s and tomorrow’s challenge

We will not see colleagues being crushed between containers

PTIL/PSA28/04/2011

5

Today’s and tomorrow’s challenge

We will not see people being snatched by tag lines

PTIL/PSA28/04/2011

6

We will not see boom failures or technical breakdowns, which can seriously hurt people and do damage to property

Today’s and tomorrow’s challenge

PTIL/PSA

Today’s and tomorrow’s challenge

We will not see people getting squeezed between containers during lifting operations

PTIL/PSA

Today’s and tomorrow’s challenge

We will not see damage to personnel an property due to use of unsafe drilling hoisting tools

PTIL/PSA

If you want to improve safety in safety critical operations …..

PTIL/PSA

Welcome to the next offshore cranes and lifting conference

Venue and dates:• Aberdeen• 24th – 26th April 2012

Recommended