PROBABILITY DISTRIBUTIONS - Vrije Universiteit...

Preview:

Citation preview

PROBABILITY DISTRIBUTIONS

Business Statistics

Probability distribution functions (discrete)

Characteristics of a discrete distribution

Example: uniform (discrete) distribution

Example: Bernoulli distribution

Example: binomial distribution

Probability density functions (continuous)

Characteristics of a continuous distribution

Example: uniform (continuous) distribution

Example: normal (or Gaussian) distribution

Example: standard normal distribution

Back to the normal distribution

Approximations to distributions

Old exam question

Further study

CONTENTS

Today we want to speed up. We will skip some slides or postpone a few. Prepare

well, we want to start the statistical topics as soon as

possible.

โ–ช A sample space is called discrete when its elements can be

counted

โ–ช We will code the elements of a discrete sample space ๐‘† as

1,2,3, โ€ฆ , ๐‘› or 0,1,2, โ€ฆ , ๐‘› โˆ’ 1โ–ช Examples

โ–ช die ๐‘ฅ โˆˆ 1,2,3,4,5,6 , so ๐‘† = 1,2,3,4,5,6โ–ช coin ๐‘ฅ โˆˆ 0,1โ–ช number of broken TV sets ๐‘ฅ โˆˆ 0,1,2,โ€ฆ

PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE)

Distribution function

๐‘ƒ ๐‘ฅ = ๐‘ƒ ๐‘‹ = ๐‘ฅ

โ–ช the probability that the (discrete) random variable ๐‘‹assumes the value ๐‘ฅ

โ–ช alternative notation: ๐‘ƒ๐‘‹ ๐‘ฅ

PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE)

Note our convention:

capital letters (๐‘‹) for random variables

lowercase letters (๐‘ฅ) for values

Example

โ–ช die: ๐‘ƒ ๐‘ฅ =

1

6if ๐‘ฅ = 1

1

6if ๐‘ฅ = 2

1

6if ๐‘ฅ = 3

1

6if ๐‘ฅ = 4

1

6if ๐‘ฅ = 5

1

6if ๐‘ฅ = 6

0 otherwise

PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE)

Example: flipping a coin 3 times

โ–ช sample space ๐‘† = ๐ป๐ป๐ป,๐ป๐ป๐‘‡,๐ป๐‘‡๐ป, ๐‘‡๐ป๐ป,โ€ฆโ–ช define the random variable ๐‘‹ = number of heads

โ–ช distribution function ๐‘ƒ ๐‘ฅ =

1

8if ๐‘ฅ = 0

3

8if ๐‘ฅ = 1

3

8if ๐‘ฅ = 2

1

8if ๐‘ฅ = 3

0 otherwise

โ–ช or: ๐‘ƒ๐‘‹ 0 =1

8, ๐‘ƒ๐‘‹ 1 =

3

8, ๐‘ƒ๐‘‹ 2 =

3

8, ๐‘ƒ๐‘‹ 3 =

1

8

PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE)

โ–ช ๐‘ƒ ๐‘ฅ is a (discrete) probability distribution function (pdf or

PDF)

โ–ช ๐‘ƒ ๐‘ฅ = ๐‘ƒ ๐‘‹ = ๐‘ฅ expresses the probability that ๐‘‹ = ๐‘ฅโ–ช A random variable ๐‘‹ that is distributed with pdf ๐‘ƒ is written

as

๐‘‹~๐‘ƒ

โ–ช Some properties of the pdf:โ–ช 0 โ‰ค ๐‘ƒ ๐‘ฅ โ‰ค 1

โ–ช a probability is always between 0 and 1โ–ช ฯƒ๐‘ฅโˆˆ๐‘†๐‘ƒ ๐‘ฅ = 1

โ–ช the probabilities of all elementary outcomes add up to 1

PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE)

โ–ช A pdf may have one or more parameters to denote a

collection of different but โ€œsimilarโ€pdfs

โ–ช Example: a regular die with ๐‘š faces

โ–ช ๐‘ƒ ๐‘‹ = ๐‘ฅ;๐‘š = ๐‘ƒ๐‘‹ ๐‘ฅ;๐‘š = ๐‘ƒ ๐‘ฅ;๐‘š =1

๐‘š(for ๐‘ฅ = 1,โ€ฆ ,๐‘š)

โ–ช ๐‘‹~๐‘ƒ ๐‘š

PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE)

๐‘š = 4 ๐‘š = 6 ๐‘š = 8 ๐‘š = 12 ๐‘š = 20

In addition to the (discrete) probability distribution function

(pdf)

โ–ช ๐‘ƒ ๐‘‹ = ๐‘ฅ = ๐‘ƒ๐‘‹ ๐‘ฅ = ๐‘ƒ ๐‘ฅwe define the (discrete) cumulative distribution function (cdf or

CDF)

๐น ๐‘ฅ = ๐น๐‘‹ ๐‘ฅ = ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅ

and therefore

๐น ๐‘ฅ =

๐‘˜=โˆ’โˆž

๐‘ฅ

๐‘ƒ ๐‘‹ = ๐‘˜ =

๐‘˜=โˆ’โˆž

๐‘ฅ

๐‘ƒ ๐‘˜

PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE)

Depending on how we

count, you may also start

at ๐‘˜ = 0 or ๐‘˜ = 1

Example

โ–ช die: ๐‘ƒ ๐‘‹ = 2 =1

6, but ๐‘ƒ ๐‘‹ โ‰ค 2 = ๐‘ƒ ๐‘‹ = 1 +

๐‘ƒ ๐‘‹ = 2 =1

3

โ–ช Some properties of the cdf:โ–ช ๐น โˆ’โˆž = 0 and ๐น โˆž = 1โ–ช monotonously increasing

PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE)

โ–ช pdf

โ–ช cdf

PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE)

Expected value of ๐‘‹

๐ธ ๐‘‹ =

๐‘–=1

๐‘

๐‘ฅ๐‘–๐‘ƒ ๐‘‹ = ๐‘ฅ๐‘– =

๐‘–=1

๐‘

๐‘ฅ๐‘–๐‘ƒ ๐‘ฅ๐‘–

โ–ช Exampleโ–ช die with ๐‘ƒ 1 = ๐‘ƒ 2 = โ‹ฏ = ๐‘ƒ 6 =

1

6โ–ช ๐ธ ๐‘‹ = 1 ร—

1

6+ 2 ร—

1

6+ 3 ร—

1

6+ 4 ร—

1

6+ 5 ร—

1

6+ 6 ร—

1

6=

7

2= 3

1

2โ–ช Interpretation: mean (average)

โ–ช alternative notation: ๐œ‡ or ๐œ‡๐‘‹โ–ช so ๐ธ ๐‘‹ = ๐œ‡๐‘‹

โ–ช Note difference between ๐œ‡ and the sample mean าง๐‘ฅโ–ช e.g., rolling a specific die ๐‘› = 100 times may return a mean าง๐‘ฅ = 3.72 or

3.43โ–ช while ๐œ‡ = 7/2, always (property of die, property of โ€œpopulationโ€)

CHARACTERISTICS OF A DISCRETE DISTRIBUTION

Variance

var ๐‘‹ =

๐‘–=1

๐‘

๐‘ฅ๐‘– โˆ’ ๐ธ ๐‘‹2๐‘ƒ ๐‘ฅ๐‘–

โ–ช Interpretation: dispersionโ–ช alternative notation: ๐œŽ2 or ๐œŽ๐‘‹

2 or ๐‘‰ ๐‘‹

โ–ช so var ๐‘‹ = ๐œŽ๐‘‹2

โ–ช Note difference between ๐œŽ2 and the sample variance ๐‘ 2

โ–ช e.g., rolling a specific die 100 times may return a variance ๐‘ 2 = 2.86 or 3.04

โ–ช while ๐œŽ2 =35

12, always (property of die, property of โ€œpopulationโ€)

โ–ช And of course: standard deviation ๐œŽ๐‘‹ = var ๐‘‹

CHARACTERISTICS OF A DISCRETE DISTRIBUTION

Transformation rules of random variable ๐‘‹ and ๐‘Œโ–ช For means:

โ–ช ๐ธ ๐‘˜ + ๐‘‹ = ๐‘˜ + ๐ธ ๐‘‹โ–ช ๐ธ ๐‘Ž๐‘‹ = ๐‘Ž๐ธ ๐‘‹โ–ช ๐ธ ๐‘‹ + ๐‘Œ = ๐ธ ๐‘‹ + ๐ธ ๐‘Œ

โ–ช For variances:โ–ช var ๐‘˜ + ๐‘‹ = var ๐‘‹โ–ช var ๐‘Ž๐‘‹ = ๐‘Ž2var ๐‘‹โ–ช if ๐‘‹ and ๐‘Œ independent (so if cov ๐‘‹, `๐‘Œ ):

โ–ช var ๐‘‹ + ๐‘Œ = var ๐‘‹ + var ๐‘Œโ–ช if ๐‘‹ and ๐‘Œ dependent:

โ–ช var ๐‘‹ + ๐‘Œ = var ๐‘‹ + 2cov ๐‘‹, ๐‘Œ + var ๐‘Œ

CHARACTERISTICS OF A DISCRETE DISTRIBUTION

โ–ช Generalization of fair die:โ–ช equal probability of integer outcomes from ๐‘Ž through ๐‘

โ–ช conditions: ๐‘Ž, ๐‘ โˆˆ โ„ค, ๐‘Ž < ๐‘โ–ช zero probability elsewhere

โ–ช uniform discrete distribution

โ–ช pdf: ๐‘ƒ ๐‘ฅ; ๐‘Ž, ๐‘ = เต1

๐‘โˆ’๐‘Ž+1๐‘ฅ โˆˆ โ„ค and ๐‘ฅ โˆˆ ๐‘Ž, ๐‘

0 otherwiseโ–ช Examples:

โ–ช coin: ๐‘Ž = 0, ๐‘ = 1โ–ช die: ๐‘Ž = 1, ๐‘ = 6

โ–ช Random variable:โ–ช ๐‘‹~๐‘ˆ ๐‘Ž, ๐‘

EXAMPLE: UNIFORM DISTRIBUTION

EXAMPLE: UNIFORM DISTRIBUTION

No need to memorize or even

discuss this sheet. Most

information is either on the

formula sheet or unimportant.

โ–ช Example: choose a random number from 1 through 100with equal probability and denote it by ๐‘‹โ–ช random variable: ๐‘‹~๐‘ˆ 1,100

โ–ช pdf: ๐‘ƒ ๐‘ฅ = ๐‘ƒ ๐‘‹ = ๐‘ฅ =1

100(๐‘ฅ โˆˆ 1,2,โ€ฆ , 100 )

โ–ช cdf: ๐น ๐‘ฅ = ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅ =๐‘ฅ

100(๐‘ฅ โˆˆ 1,2,โ€ฆ , 100 )

โ–ช expected value: ๐ธ ๐‘‹ = 501

2

โ–ช variance: var ๐‘‹ =9999

12โ‰ˆ 833.25

โ–ช Sample (๐‘› = 1000): โ–ช values (e.g.): 45, 96, 33, 7, 44, 96, 20, โ€ฆโ–ช mean: าง๐‘ฅ = 50.92 (e.g.)

โ–ช variance: ๐‘ ๐‘ฅ2 = 823.25 (e.g.)

EXAMPLE: UNIFORM DISTRIBUTION

Given are two dice, with outcomes ๐‘‹ and ๐‘Œ.

a. Find ๐ธ ๐‘‹ + ๐‘Œb. Find var ๐‘‹ + ๐‘Œ

EXERCISE 1

โ–ช Bernoulli experimentโ–ช random experiment with 2 discrete outcomes (coin type)

โ–ช head, true, โ€œsuccessโ€, female: ๐‘‹ = 1โ–ช tail, false, โ€œfailโ€, male: ๐‘‹ = 0โ–ช Bernoulli distribution

โ–ช Examples:โ–ช winning a price in a lottery (buying one ticket)

โ–ช your luggage arrives in time at a destination

โ–ช Probability of success is parameter ๐œ‹ (with 0 โ‰ค ๐œ‹ โ‰ค 1)โ–ช ๐‘ƒ 1 = ๐‘ƒ ๐‘‹ = 1 = ๐œ‹โ–ช ๐‘ƒ 0 = ๐‘ƒ ๐‘‹ = 0 = 1 โˆ’ ๐œ‹

โ–ช Random variableโ–ช ๐‘‹~๐ต๐‘’๐‘Ÿ๐‘›๐‘œ๐‘ข๐‘™๐‘™๐‘– ๐œ‹ or ๐‘‹~๐‘Ž๐‘™๐‘ก ๐œ‹

EXAMPLE: BERNOULLI DISTRIBUTION

โ–ช Expected valueโ–ช ๐ธ ๐‘‹ = ๐œ‹ (obviously!)

โ–ช Varianceโ–ช var ๐‘‹ = ๐œ‹ 1 โˆ’ ๐œ‹โ–ช variance zero when ๐œ‹ = 0 or ๐œ‹ = 1 (obviously!)

โ–ช variance maximal when ๐œ‹ = 1 โˆ’ ๐œ‹ =1

2(obviously!)

โ–ช pdf: ๐‘ ๐‘ฅ; ๐œ‹ = แ‰๐œ‹ if ๐‘ฅ = 1

1 โˆ’ ๐œ‹ if ๐‘ฅ = 00 otherwise

โ–ช cdf: (not so interesting)

EXAMPLE: BERNOULLI DISTRIBUTION

โ–ช Repeating a Bernoulli experiment ๐‘› timesโ–ช ๐‘‹ is total number of โ€œsuccessesโ€

โ–ช ๐‘ƒ ๐‘‹ = ๐‘ฅ is probality of ๐‘ฅ โ€œsuccessesโ€ in sample

โ–ช ๐‘‹ = ๐‘‹1 + ๐‘‹2 +โ‹ฏ+ ๐‘‹๐‘›โ–ช where ๐‘‹๐‘– is the outcome of Bernoulli experiment number ๐‘– =1,2,โ€ฆ , ๐‘›

โ–ช ๐‘‹ has a binomial distribution

EXAMPLE: BINOMIAL DISTRIBUTION

โ–ช Exampleโ–ช flip a coin 10 times:๐‘‹ is number of โ€œheads upโ€

โ–ช roll 100 dice: ๐‘‹ is number of โ€œsixesโ€

โ–ช produce 1000 TV sets: ๐‘‹ is number of broken sets

โ–ช What is important?โ–ช the number of repitions (๐‘›)

โ–ช the probability of success (๐œ‹) per item

โ–ช the constancy of ๐œ‹โ–ช the independence of the โ€œexperimentsโ€

EXAMPLE: BINOMIAL DISTRIBUTION

โ–ช Expected valueโ–ช ๐ธ ๐‘‹ = ๐‘›๐œ‹ (obviously!)

โ–ช Varianceโ–ช var ๐‘‹ = ๐‘›๐œ‹ 1 โˆ’ ๐œ‹โ–ช minimum (0) when ๐œ‹ = 0 or ๐œ‹ = 1 (obviously!)

โ–ช maximum for given ๐‘› when ๐œ‹ = 1 โˆ’ ๐œ‹ =1

2(obviously!)

โ–ช pdf:

โ–ช ๐‘ ๐‘ฅ; ๐‘›, ๐œ‹ =๐‘›!

๐‘ฅ! ๐‘›โˆ’๐‘ฅ !๐œ‹๐‘ฅ 1 โˆ’ ๐œ‹ ๐‘›โˆ’๐‘ฅ (๐‘ฅ โˆˆ 0,1,2,โ€ฆ , ๐‘› )

โ–ช cdf:โ–ช ๐น ๐‘ฅ; ๐‘›, ๐œ‹ = ฯƒ๐‘˜=0

๐‘ฅ ๐‘ ๐‘ฅ; ๐‘›, ๐œ‹

โ–ช Random variable:โ–ช ๐‘‹~๐‘๐‘–๐‘› ๐‘›, ๐œ‹ or ๐‘‹~๐‘๐‘–๐‘›๐‘œ๐‘š ๐‘›, ๐œ‹

EXAMPLE: BINOMIAL DISTRIBUTION

Recall the factorial function:

5! = 5 ร— 4 ร— 3 ร— 2 ร— 1

โ–ช Example:โ–ช roll 10 dice: what is the distribution of ๐‘‹ = number of โ€œsixesโ€?

โ–ช What is the probability model?โ–ช you repeat an experiment 10 times (๐‘› = 10)

โ–ช with a probability ๐œ‹ =1

6of success and a probability 1 โˆ’ ๐œ‹ =

5

6of failure per

experiment

โ–ช What is the probability distribution?

โ–ช ๐‘‹~๐‘๐‘–๐‘› 10,1

6

โ–ช where the random variable ๐‘‹ represents the total number of sixes

โ–ช so ๐‘‹ is not the outcome of a roll of the die!

โ–ช ๐ธ ๐‘‹ = 10 ร—1

6= 1

2

3

โ–ช so we expect on average 12

3sixes in 10 rolls

โ–ช var ๐‘‹ = 10 ร—1

6ร—

5

6=

25

18

EXAMPLE: BINOMIAL DISTRIBUTION

EXAMPLE: BINOMIAL DISTRIBUTION

No need to memorize or even discuss this

sheet. Most information is either on the

formula sheet or unimportant.

โ–ช Calculating pdf and cdf values

โ–ช Example: binomial distrbution with ๐‘› = 8, ๐œ‹ = 0.5โ–ช what is ๐‘ƒ 3 = ๐‘ƒ ๐‘‹ = 3 (pdf)?

โ–ช what is ๐น 3 = ๐‘ƒ ๐‘‹ โ‰ค 3 (cdf)?

โ–ช Different methods:โ–ช using a graphical calculator (not at the exam)

โ–ช using the formula (see next slides)

โ–ช using a table (see next slides)

โ–ช using Excel (see the computer tutorials)

โ–ช using online calculators (figure out for yourself)

EXAMPLE: BINOMIAL DISTRIBUTION

โ–ช pdf using the formula

โ–ช ๐‘ƒ 3; 8,0.5 =8!

3! 8โˆ’3 !0.53 1 โˆ’ 0.5 8โˆ’3 = 0.2188

โ–ช or

โ–ช ๐‘ƒ 3; 8,0.5 = 830.53 1 โˆ’ 0.5 8โˆ’3 = 0.2188

โ–ช using the binomial coefficient ๐‘›๐‘˜

= ๐‘›๐ถ๐‘˜ =๐‘›!

๐‘˜! ๐‘›โˆ’๐‘˜ !

EXAMPLE: BINOMIAL DISTRIBUTION

At the exam, you can just use the tables.

Much easier!

โ–ช pdf using the table in Appendix Aโ–ช ๐‘ƒ 3; 8,0.50 = 0.2188

EXAMPLE: BINOMIAL DISTRIBUTION

โ–ช At the exam: non-cumulative table only

โ–ช Problem: how to do the cdf?

โ–ช Use the definition:

๐น ๐‘ฅ = ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅ =

๐‘˜=0

๐‘ฅ

๐‘ƒ ๐‘‹ = ๐‘˜

โ–ช ๐‘ƒ ๐‘‹ โ‰ค 3 = ๐‘ƒ ๐‘‹ = 0 + ๐‘ƒ ๐‘‹ = 1 + ๐‘ƒ ๐‘‹ = 2 +๐‘ƒ ๐‘‹ = 3

โ–ช use table, four times

EXAMPLE: BINOMIAL DISTRIBUTION

โ–ช Exampleโ–ช ๐น 3; 8,0.50 = 0.0039 + 0.0313 + 0.1094 + 0.2188

EXAMPLE: BINOMIAL DISTRIBUTION

Note that this table gives a

pdf, not a cdf

โ–ช Note that cdf is ๐น ๐‘ฅ = ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅโ–ช How to find ๐‘ƒ ๐‘‹ < ๐‘ฅ ?

โ–ช use ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅ = ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅ โˆ’ 1โ–ช How to find ๐‘ƒ ๐‘‹ > ๐‘ฅ ?

โ–ช use ๐‘ƒ X > x = 1 โˆ’ ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅโ–ช How to find ๐‘ƒ ๐‘ฅ1 < ๐‘‹ < ๐‘ฅ2 ?

โ–ช use ๐‘ƒ ๐‘ฅ1 < ๐‘‹ < ๐‘ฅ2 = ๐‘ƒ ๐‘‹ < ๐‘ฅ2 โˆ’ ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅ1โ–ช Etc.

EXAMPLE: BINOMIAL DISTRIBUTION

โ–ช Use such rules to efficiently use the (pdf) table (๐‘› = 8)โ–ช ๐‘ƒ ๐‘‹ โ‰ค 7 = ๐‘ƒ 0 + ๐‘ƒ 1 +โ‹ฏ+ ๐‘ƒ 7

โ–ช Much easier:โ–ช ๐‘ƒ ๐‘‹ โ‰ค 7 = 1 โˆ’ ๐‘ƒ 8

EXAMPLE: BINOMIAL DISTRIBUTION

Example:

โ–ช Context:โ–ช on average, 20% of the emergency room patients at Greenwood

General Hospital lack health insurance

โ–ช In a random sample of 4 patients, what is the probability

that at least 2 will be uninsured?

EXAMPLE: BINOMIAL DISTRIBUTION

โ–ช Binomial model (patient is uninsured or not, ๐œ‹uninsured =0.20)โ–ช ๐‘‹ is number of uninsured patients in sample

โ–ช ๐‘ƒ ๐‘‹ โ‰ฅ 2 = ๐‘ƒ ๐‘‹ = 2 + ๐‘ƒ ๐‘‹ = 3 + ๐‘ƒ ๐‘‹ = 4 =0.1536 + 0.0256 + 0.0016 = 0.1808

EXAMPLE: BINOMIAL DISTRIBUTION

Note that this table gives a

pdf, not a cdf

Discrete distributionsโ–ช probability distribution function (pdf): ๐‘ƒ ๐‘ฅ = ๐‘ƒ ๐‘‹ = ๐‘ฅโ–ช probability of obtaining the value ๐‘ฅ

Continuous distributionsโ–ช the probability of obtaining the value ๐‘ฅ is 0โ–ช define probability density function (pdf): ๐‘“ ๐‘ฅ

โ–ช ๐‘ƒ ๐‘Ž โ‰ค ๐‘‹ โ‰ค ๐‘ = ๐‘Ž๐‘๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ

โ–ช probability of obtaining a value between ๐‘Ž and ๐‘

PROBABILITY DENSITY FUNCTION (CONTINUOUS)

Compare with the

probability distribution

function (pdf) ๐‘ƒ ๐‘‹ = ๐‘ฅfor the discrete case

The red curve is the pdf, ๐‘“ ๐‘ฅThe integral is the grey area

under the pdf

So pdf refers to two distinct but related things:โ–ช probability distribution function ๐‘ƒ ๐‘ฅ (discrete case)

โ–ช probability density function ๐‘“ ๐‘ฅ (continuous case)

Note also that the dimensions are differentโ–ช ๐‘ƒ is a dimensionless probability

โ–ช example:

โ–ช if ๐‘‹ is in kg, the discrete pdf ๐‘ƒ ๐‘‹ is dimensionless

โ–ช while the continuous pdf ๐‘“ ๐‘ฅ is in 1/kg

PROBABILITY DENSITY FUNCTION (CONTINUOUS)

Because ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ should be

dimensionless, and ๐‘‘๐‘ฅ is in in kg

In addition to the probability density function ...โ–ช ๐‘ƒ ๐‘ฅ = ๐‘ƒ๐‘‹ ๐‘ฅ

... we define the cumulative distribution function (cdf or CDF)

๐น ๐‘ฅ = ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅ = เถฑ

โˆ’โˆž

๐‘ฅ

๐‘“ ๐‘ฆ ๐‘‘๐‘ฆ

Some properties of the cdf:โ–ช ๐น โˆ’โˆž = 0 and ๐น โˆž = 1โ–ช monotonously increasing

PROBABILITY DENSITY FUNCTION (CONTINUOUS)

Compare with

๐น ๐‘ฅ = ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅ =

๐‘˜=โˆ’โˆž

๐‘ฅ

๐‘ƒ ๐‘‹ = ๐‘˜

for the discrete case

๐‘ฅ

๐น ๐‘ฅ

โ–ช pdf

โ–ช cdf

PROBABILITY DENSITY FUNCTION (CONTINUOUS)

๐‘ƒ 70 โ‰ค ๐‘‹ โ‰ค 75

= เถฑ

70

75

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ

๐‘ƒ 70 โ‰ค ๐‘‹ โ‰ค 75= ๐น 75 โˆ’ ๐น 70

โ–ช Expected value

๐ธ ๐‘‹ = เถฑ

โˆ’โˆž

โˆž

๐‘ฅ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ

โ–ช Example: let ๐‘“ ๐‘ฅ = 1 for ๐‘ฅ โˆˆ 0,1

โ–ช ๐ธ ๐‘‹ = 01๐‘ฅ๐‘‘๐‘ฅ = แ‰ƒ

1

2๐‘ฅ2

0

1=

1

2

โ–ช Interpretation: mean (average)โ–ช alternative notation for ๐ธ ๐‘‹ : ๐œ‡ or ๐œ‡๐‘‹

CHARACTERISTICS OF A CONTINUOUS DISTRIBUTION

Compare with

๐ธ ๐‘‹ =

๐‘–=1

๐‘›

๐‘ฅ๐‘–๐‘ƒ ๐‘ฅ

for the discrete case

โ–ช Variance

var ๐‘‹ = เถฑ

โˆ’โˆž

โˆž

๐‘ฅ โˆ’ ๐ธ ๐‘‹2๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ

โ–ช Interpretation: dispersionโ–ช alternative notation for var ๐‘‹ : ๐œŽ2 or ๐œŽ๐‘‹

2 or V(๐‘‹)

CHARACTERISTICS OF A CONTINUOUS DISTRIBUTION

Compare with

var ๐‘‹ =

๐‘–=1

๐‘›

๐‘ฅ๐‘– โˆ’ ๐ธ ๐‘‹2๐‘ƒ ๐‘ฅ๐‘–

for the discrete case

โ–ช Analogy with uniform discrete distributionโ–ช equal density for all outcomes between ๐‘Ž and ๐‘

โ–ช condition: ๐‘Ž < ๐‘โ–ช zero probability elsewhere

โ–ช uniform continuous distribution

โ–ช pdf: ๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘ = เต1

๐‘โˆ’๐‘Ž๐‘ฅ โˆˆ ๐‘Ž, ๐‘

0 otherwise

โ–ช or easier: ๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘ =1

๐‘โˆ’๐‘Ž(๐‘ฅ โˆˆ ๐‘Ž, ๐‘ )

โ–ช Examples:โ–ช โ€œstandardโ€ uniform deviate: ๐‘Ž = 0, ๐‘ = 1

EXAMPLE: UNIFORM (CONTINUOUS) DISTRIBUTION

Example: let ๐‘‹ be exam grade of randomly selected studentโ–ช assume uniform distribution: ๐‘‹~๐‘ˆ 1,10โ–ช what is ๐‘ƒ ๐‘‹ โ‰ฅ 6.5 ?

Solutionโ–ช use ๐‘ƒ ๐‘‹ โ‰ฅ 6.5 = 1 โˆ’ ๐‘ƒ ๐‘‹ < 6.5 = 1 โˆ’ ๐‘ƒ ๐‘‹ โ‰ค 6.5

โ–ช cdf: ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅ = ๐น ๐‘ฅ = โˆžโˆ’๐‘ฅ๐‘“ ๐‘ฆ ๐‘‘๐‘ฆ

โ–ช uniform continuous with ๐‘Ž = 1 and ๐‘ = 10

โ–ช pdf: ๐‘“ ๐‘ฅ =1

9(๐‘ฅ โˆˆ 1,10 )

โ–ช cdf: ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅ = 1๐‘ฅ 1

9๐‘‘๐‘ฆ =

1

9๐‘ฅ โˆ’ 1

โ–ช answer: ๐‘ƒ ๐‘‹ โ‰ฅ 6.5 = 1 โˆ’1

96.5 โˆ’ 1

โ–ช or: area of black rectangle

EXAMPLE: UNIFORM (CONTINUOUS) DISTRIBUTION

For a continuous distribution

๐‘ƒ ๐‘‹ < ๐‘ฅ = ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅbecause ๐‘ƒ ๐‘‹ = ๐‘ฅ = 0

1 6.5 10

1

9

๐‘ƒ ๐‘‹ โ‰ฅ 6.5 is the black area

โ–ช Expected value

โ–ช ๐ธ ๐‘‹ =๐‘Ž+๐‘

2

โ–ช Variance

โ–ช var ๐‘‹ =๐‘โˆ’๐‘Ž 2

12๐‘Ž)๐‘๐‘ฅ โˆ’

๐‘Ž+๐‘

2

2ร—

1

๐‘โˆ’๐‘Ž๐‘‘๐‘ฅ =

๐‘โˆ’๐‘Ž 2

12)

โ–ช pdf

โ–ช ๐‘“ ๐‘ฅ =1

๐‘โˆ’๐‘Ž

โ–ช cdfโ–ช ๐น ๐‘ฅ =

๐‘ฅโˆ’๐‘Ž

๐‘โˆ’๐‘Ž

โ–ช Random variableโ–ช ๐‘‹~๐‘ˆ ๐‘Ž, ๐‘ or ๐‘‹~โ„Ž๐‘œ๐‘š 0, ๐œƒ or ๐‘‹~โ„Ž๐‘œ๐‘š ๐œƒ etc.

EXAMPLE: UNIFORM (CONTINUOUS) DISTRIBUTION

โ–ช pdf

โ–ช ๐‘“ ๐‘ฅ; ๐œ‡, ๐œŽ =1

๐œŽ 2๐œ‹๐‘’โˆ’1

2

๐‘ฅโˆ’๐œ‡

๐œŽ

2

โ–ช cdf

โ–ช ๐น ๐‘ฅ = โˆžโˆ’๐‘ฅ๐‘“ ๐‘ฆ; ๐œ‡, ๐œŽ ๐‘‘๐‘ฆ =? ? ?

โ–ช Expected valueโ–ช ๐ธ ๐‘‹ = ๐œ‡

โ–ช Varianceโ–ช var ๐‘‹ = ๐œŽ2

โ–ช Random variableโ–ช ๐‘‹~๐‘ ๐œ‡, ๐œŽ or ๐‘‹~๐‘ ๐œ‡, ๐œŽ2

EXAMPLE: NORMAL (OR GAUSSIAN) DISTRIBUTION

In a concrete case indicate the

parameterโ€™s symbol:

๐‘ 12, ๐œŽ = 2 or ๐‘ 12, ๐œŽ2 = 4

Remember notation ๐œ‡๐‘‹ for expected

value and ๐œŽ๐‘‹2 for variance.

So here ๐œ‡๐‘‹ = ๐œ‡ and ๐œŽ๐‘‹2 = ๐œŽ2.

This is no coincedence!

Now, ๐œ‹ = 3.1415 ...

โ–ช Some characteristicsโ–ช range: ๐‘ฅ โˆˆ โˆ’โˆž,โˆžโ–ช pdf has maximum at ๐‘ฅ = ๐œ‡โ–ช pdf is symmetric around ๐‘ฅ = ๐œ‡โ–ช not too interesting for ๐‘ฅ < ๐œ‡ โˆ’ 3๐œŽ and for ๐‘ฅ > ๐œ‡ + 3๐œŽ

EXAMPLE: NORMAL (OR GAUSSIAN) DISTRIBUTION

โ–ช Normal distribution with ๐œ‡ = 0 and ๐œŽ = 1โ–ช so a 0-parameter distribution: standard normal

โ–ช pdf

โ–ช ๐‘“ ๐‘ฅ =1

2๐œ‹๐‘’โˆ’

1

2๐‘ฅ2

โ–ช cdfโ–ช ๐น ๐‘ฅ = โˆžโˆ’

๐‘ฅ๐‘“ ๐‘ฆ ๐‘‘๐‘ฆ =? ? ?= ฮฆ ๐‘ฅ

โ–ช with ฮฆ โˆ’โˆž = 0, ฮฆ โˆž = 1, ฮฆ 0 = 0.5, ๐‘‘ฮฆ

๐‘‘๐‘ฅ= ๐‘“ ๐‘ฅ

โ–ช Expected valueโ–ช ๐ธ ๐‘‹ = 0

โ–ช Varianceโ–ช var ๐‘‹ = 1

โ–ช Random variableโ–ช ๐‘‹~๐‘ 0,1 , we often write ๐‘~๐‘ 0,1

EXAMPLE: STANDARD NORMAL DISTRIBUTION

Remember the trick:

if you donโ€™t know

something, just give it

a name

โ–ช Important because any normally distributed variable can be

โ€œstandardizedโ€ to standard normal distribution

โ–ช Methods for determing the values of ฮฆ ๐‘ฅ :โ–ช using a graphical calculator (not at the exam)

โ–ช not using a formula (no formula available for ฮฆ ๐‘ฅ )

โ–ช using a table (see next slides)

โ–ช using Excel (see the computer tutorials)

โ–ช using online calculators (figure out for yourself)

EXAMPLE: STANDARD NORMAL DISTRIBUTION

โ–ช Calculating the value of the cdf with a tableโ–ช ๐‘ƒ ๐‘ โ‰ค 1.36 = ฮฆ 1.36โ–ช table C-2 (p.768): ๐‘ƒ ๐‘ โ‰ค 1.36 = 0.9131

EXAMPLE: STANDARD NORMAL DISTRIBUTION

Note that cdf is ๐‘ƒ ๐‘ โ‰ค ๐‘ฅโ–ช How to find ๐‘ƒ ๐‘ < ๐‘ฅ ?

โ–ช use ๐‘ƒ ๐‘ โ‰ค ๐‘ฅ (why?)

โ–ช How to find ๐‘ƒ ๐‘ > ๐‘ฅ ?โ–ช use 1 โˆ’ ๐‘ƒ ๐‘ โ‰ค ๐‘ฅ (why?)

โ–ช or use ๐‘ƒ ๐‘ > ๐‘ฅ = ๐‘ƒ ๐‘ < โˆ’๐‘ฅ (why?)

โ–ช How to find ๐‘ƒ ๐‘ โ‰ฅ ๐‘ฅ ?โ–ช is easy now ...

โ–ช How to find ๐‘ƒ ๐‘ฅ โ‰ค ๐‘ โ‰ค ๐‘ฆ ?โ–ช use ๐‘ƒ ๐‘ โ‰ค ๐‘ฆ โˆ’ ๐‘ƒ ๐‘ โ‰ค ๐‘ฅ

โ–ช Etc.

EXAMPLE: STANDARD NORMAL DISTRIBUTION

= โˆ’

Scale for standard normal,

but this applies to any

continuous distribution

โ–ช Inverse lookupโ–ช ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅ = ฮฆ ๐‘ฅ = 0.90โ–ช table C-2 (p.768): ๐‘ฅ โ‰ˆ 1.28

EXAMPLE: STANDARD NORMAL DISTRIBUTION

No need to know this table by heart...

but two values can be convenient to know

โ–ช ๐‘ƒ ๐‘ โ‰ค 1.96 = 0.95, a ๐‘ง-value as large as 1.96 or

larger occurs only with 5% probability

โ–ช ๐‘ƒ โˆ’1.645 โ‰ค ๐‘ โ‰ค 1.645 = 0.95, a ๐‘ง-value as large as

1.96 or larger or as small as โˆ’1.645 or smaller occurs

only with 5% probability

โ–ช so remember 1.96 and 1.645โ–ช (you can always look them up if you forgot or are unsure)

EXAMPLE: STANDARD NORMAL DISTRIBUTION

Note: ๐‘‹~๐‘ ๐œ‡, ๐œŽ2 โ‡” ๐‘‹ โˆ’ ๐œ‡~๐‘ 0, ๐œŽ2 โ‡”๐‘‹โˆ’๐œ‡

๐œŽ~๐‘ 0,1

โ–ช Standardization

โ–ช ๐‘ฅ โ†’ ๐‘ง =๐‘ฅโˆ’๐œ‡

๐œŽand ๐‘‹ โ†’ ๐‘ =

๐‘‹โˆ’๐œ‡

๐œŽ

โ–ช If ๐‘‹~๐‘ ๐œ‡, ๐œŽ2 , how to determine ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅ ?

โ–ช ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅ = ๐‘ƒ ๐‘‹ โˆ’ ๐œ‡ โ‰ค ๐‘ฅ โˆ’ ๐œ‡ = ๐‘ƒ๐‘‹โˆ’๐œ‡

๐œŽโ‰ค

๐‘ฅโˆ’๐œ‡

๐œŽ= ๐‘ƒ ๐‘ โ‰ค

๐‘ฅโˆ’๐œ‡

๐œŽ

โ–ช Exampleโ–ช suppose ๐‘‹~๐‘ 180, ๐œŽ2 = 25

โ–ช ๐‘ƒ ๐‘‹ โ‰ค 190 = ๐‘ƒ ๐‘ โ‰ค190โˆ’180

5= ๐‘ƒ ๐‘ โ‰ค 2 = 0.9772

โ–ช ๐‘ƒ ๐‘‹ โ‰ค ๐‘ฅ = 0.90 = ๐‘ƒ ๐‘ โ‰ค๐‘ฅโˆ’180

5โ‡’

๐‘ฅโˆ’180

5= 1.28 โ‡’ ๐‘ฅ = 186.4

BACK TO THE NORMAL DISTRIBUTION

This is our way of doing

normalcdf and invnorm if you

donโ€™t have a graphical calculator!

โ–ช What is โ€œnormalโ€ about the normal distribution?โ–ช it has quite a weird pdf formula

โ–ช and an even weirder cdf formula

โ–ช Butโ–ช it is unimodal

โ–ช it is symmetric

โ–ช very often empirical distributions โ€œlookโ€ normal

โ–ช a quantity is approximately normal if it is influenced by many

additive factors, none of which is dominating

โ–ช several statistics (mean, sum, ...) are normally distributed

โ–ช Youโ€™ll learn that soonโ–ช when we discuss the Central Limit Theorem (CLT)

BACK TO THE NORMAL DISTRIBUTION

โ–ช Scalingโ–ช If ๐‘‹~๐‘ ๐œ‡๐‘‹, ๐œŽ๐‘‹

2 then ๐‘Ž๐‘‹ + ๐‘~๐‘ ๐‘Ž๐œ‡๐‘‹ + ๐‘, ๐‘Ž2๐œŽ๐‘‹2

โ–ช Additivityโ–ช If ๐‘‹~๐‘ ๐œ‡๐‘‹, ๐œŽ๐‘‹

2 and ๐‘Œ~๐‘ ๐œ‡๐‘Œ, ๐œŽ๐‘Œ2 and ๐‘‹, ๐‘Œ independent, then

๐‘‹ + ๐‘Œ~๐‘ ๐œ‡๐‘‹ + ๐œ‡๐‘Œ, ๐œŽ๐‘‹2 + ๐œŽ๐‘Œ

2

PROPERTIES OF THE NORMAL DISTRIBUTION

pdf of 0.825๐‘‹ + 11

pdf of ๐‘‹

Sometimes, we can approximate a โ€œdifficultโ€ distribution by a

โ€œsimplerโ€ one

โ–ช Important case: binomial normalโ–ช example 1: flipping a coin (๐œ‹ = 0.50, ๐‘‹ = #heads) very often

APPROXIMATIONS TO DISTRIBUTIONS

โ–ช But also when ๐œ‹ โ‰  0.50โ–ช example 2: flipping a biased coin (๐œ‹ = 0.30, ๐‘‹ = #heads) very

often

APPROXIMATIONS TO DISTRIBUTIONS

๐‘› = 10; ๐œ‹ = .30 ๐‘› = 20; ๐œ‹ = .30 ๐‘› = 40; ๐œ‹ = .30

โ–ช binomial normalโ–ช ๐‘๐‘–๐‘› ๐‘›, ๐œ‹ ๐‘ ๐œ‡, ๐œŽ2

โ–ช using ๐œ‡ =? ? ? and ๐œŽ2 =? ? ?

We know that when ๐‘‹~๐‘๐‘–๐‘› ๐‘›, ๐œ‹โ–ช ๐ธ ๐‘‹ = ๐‘›๐œ‹โ–ช var ๐‘‹ = ๐‘›๐œ‹ 1 โˆ’ ๐œ‹

So, replaceโ–ช ๐œ‡ = ๐‘›๐œ‹โ–ช ๐œŽ2 = ๐‘›๐œ‹ 1 โˆ’ ๐œ‹

So,โ–ช ๐‘๐‘–๐‘› ๐‘›, ๐œ‹ ๐‘ ๐‘›๐œ‹, ๐‘›๐œ‹ 1 โˆ’ ๐œ‹

โ–ช rule: allowed when ๐‘›๐œ‹ โ‰ฅ 5 and ๐‘› 1 โˆ’ ๐œ‹ โ‰ฅ 5

APPROXIMATIONS TO DISTRIBUTIONS

The book says โ‰ฅ 10instead of โ‰ฅ 5

โ–ช Example binomial normalโ–ช roll a die ๐‘› = 900 times

โ–ช study the occurrence of โ€œsixesโ€ (so ๐œ‹ =1

6)

โ–ช what is the probability of no more then 170 โ€œsixesโ€?

โ–ช Exact: ๐‘ƒ๐‘๐‘–๐‘› ๐‘›=900;๐œ‹=1/6 X โ‰ค 170 =?

โ–ช Two problems:โ–ช need to add 171 pdf-terms (๐‘ƒ ๐‘‹ = 0 until ๐‘ƒ ๐‘‹ = 170 )

โ–ช 900! gives an ERROR

โ–ช Approximation: ๐‘ƒ๐‘ ๐œ‡=150;๐œŽ2=125 ๐‘‹ โ‰ค 170 =

๐‘ƒ๐‘ ๐‘ โ‰ค170โˆ’150

125= ฮฆ๐‘ 1.7888 โ‰ˆ 0.9631

APPROXIMATIONS TO DISTRIBUTIONS

900 ร—1

6= 150

900 ร—1

6ร— 1 โˆ’

1

6= 125

โ–ช Now take ๐‘‹~๐‘๐‘–๐‘› 18,0.5โ–ช In a โ€œbinomialโ€ context ๐‘ƒ ๐‘‹ โ‰ค 11 = ๐‘ƒ ๐‘‹ < 12โ–ช But in a โ€œnormalโ€ context ๐‘ƒ ๐‘‹ โ‰ค 11 = ๐‘ƒ ๐‘‹ < 11

โ–ช So, take care about using integers

โ–ช Safest: go half-way: ๐‘ƒ ๐‘‹ โ‰ค 11.5 = ๐‘ƒ ๐‘‹ < 11.5โ–ช This is the continuity correction

APPROXIMATIONS TO DISTRIBUTIONS

The intuitive notion of the continuity correctionโ–ช when approximating a discrete distribution by a continuous

distribution

APPROXIMATIONS TO DISTRIBUTIONS

๐‘ƒ๐‘๐‘–๐‘› ๐‘‹ โ‰ค 7 โ‰ˆ ๐‘ƒ๐‘ ๐‘‹ โ‰ค 71

2๐‘ƒ๐‘๐‘–๐‘› ๐‘‹ โ‰ฅ 7 โ‰ˆ ๐‘ƒ๐‘ ๐‘‹ โ‰ฅ 6

1

2

Improving previous result

โ–ช without continuity correctionโ–ช ๐‘ƒ๐‘๐‘–๐‘› ๐‘›=900;๐œ‹=1/6 X โ‰ค 170 = ๐‘ƒ๐‘ ๐œ‡=150;๐œŽ2=125 (

)

๐‘‹ โ‰ค

170 = ๐‘ƒ๐‘ ๐‘ โ‰ค170โˆ’150

125= ฮฆ๐‘ 1.788 โ‰ˆ 0.9631

โ–ช with continuity correctionโ–ช ๐‘ƒ๐‘๐‘–๐‘› ๐‘›=900;๐œ‹=1/6 X โ‰ค 170 = ๐‘ƒ๐‘ ๐œ‡=150;๐œŽ2=125 (

)

๐‘‹ โ‰ค

170.5 = ๐‘ƒ๐‘ ๐‘ โ‰ค170.5โˆ’150

125= ฮฆ๐‘ 1.833 โ‰ˆ 0.9664

APPROXIMATIONS TO DISTRIBUTIONS

30 June 2014, Q1d

OLD EXAM QUESTION

30 June 2014, Q1f

OLD EXAM QUESTION

Doane & Seward 5/E 6.1-6.4, 6.8, 7.1-7.5

Tutorial exercises week 1

discrete probability distributions

continuous probability distributions

expectation and variance

FURTHER STUDY

Recommended