presentation-4 discrete time systems-2ehm.kocaeli.edu.tr/upload/duyurular/161018112341dc074.pdf ·...

Preview:

Citation preview

MEH329DIGITAL SIGNAL PROCESSING

Dept. Of Electronics & Telecomm. Eng.Kocaeli University

-4-Discrete Time Systems-2

Linear Constant-Coefficient Difference Equations (LCCDE)

• We calculate the output (response) of an LTI system using the input and the system’s impulse response

• However, as n gets larger, the convolution sum results in increased computation time and memory requirement

• Systems for which the output can be represented in terms of the input signal’s present and past values and the output signal’s past values reduce these requirement

MEH329 Digital Signal Processing 2

Linear Constant-Coefficient DifferenceEquations (LCCDE)

• An important class of LTI systems consists ofthose systems for which the input x[n] andoutput y[n] satisfy Nth-order eq. form of:

3MEH329 Digital Signal Processing

0 0

N M

k mk m

a y n k b x n m

Linear Constant-Coefficient DifferenceEquations

4MEH329 Digital Signal Processing

01 0

N M

k kk m

a y n a y n k b x n m

0 10

1 M N

k km k

y n b x n m a y n ka

• If we choose a0=1;

0 1

M N

k km k

y n b x n m a y n k

• All systems cannot be represented in terms of an LCCD

MEH329 Digital Signal Processing 5

Linear Constant-Coefficient DifferenceEquations

6MEH329 Digital Signal Processing

0

M

mm

y n b x n m

0

M

mm

h n b n m

If the output is not related with the previous outputvalues:

As a special case, if the output of the system does not depend on past output values:

Linear Constant-Coefficient Difference Equations

MEH329 Digital Signal Processing 7

Sistemin dürtü yanıtı doğrudan giriş değerlerinin katsayıları olarakbulunduğundan LCCDE gösterimikonvolusyon toplamınadönüşmektedir.

• Sistem çıkışının sadece giriş değerlerine bağlı olduğu bu sistemşerde LCCDE ile konvolusyon toplamının sonucu aynıdır.

• Sistemin dürtü yanıtı sonlu sayıda sıfırdan farklı değerlere sahip olduğu için bu tür sistemler yapı itibarıyle FIR sistemlerdir.

• The length of impulse response is M+1 (FIR)

MEH329 Digital Signal Processing 8

Linear Constant-Coefficient DifferenceEquations

9MEH329 Digital Signal Processing

1y n x n x n • Example:

n < -1 : x[n]=0 and y[n]=0n = -1 : y[-1]=x[-1]-x[-2]=2n = 0 : y[0]=x[0]-x[-1]=-1n = 1 : y[1]=x[1]-x[0]=-1n = 2 : y[2]=x[2]-x[1]=-1n = 3 : y[3]=x[3]-x[2]=-1n = 4 : y[4]=x[4]-x[3]=3n = 5 : y[5]=x[5]-x[4]=-1n > 5 : y[n]=0

0

2, 1,0, 1, 2,1n

x n

• X[n] y[n]

MEH329 Digital Signal Processing 10

Linear Constant-Coefficient Difference Equations

• Özyinesiz(Non-Recursive): Bir sistem LCCDE şeklinde tanımlandığında sistem çıkışı girişin o andaki ve eski değerlerine bağlı ise

• Özyineli (Recursive): Bir sistem LCCDE şeklinde tanımlandığında sistem çıkışı girişin o andaki ve eski değerlerine ek olarak çıkışın da eski değerlerine bağlı ise

• Recursive sistemlerde giriş değerleri yanında çıkışın başlangıç koşulları da verilmelidir.

• Başlangıç koşulları sistemin çalışma biçimine doğrudan etkisi bulunduğu için onemlidir.

MEH329 Digital Signal Processing 11

LCCDE

12MEH329 Digital Signal Processing

n

k

y n x k

• Example: Find the output of the accumulator

system

1

1

n

k

y n x n x k

y n x n y n

1y n y n x n 0

1

0

1

1

1

1

N

a

a

b

LCCDE representation

Linear Constant-Coefficient DifferenceEquations

13MEH329 Digital Signal Processing

• We need an initial value for y

• If the system start with y[-1]=0

0

1,0, 1, 2,1n

x n

Linear Constant-Coefficient DifferenceEquations

14MEH329 Digital Signal Processing

n < 0 : y[n]=0n = 0 : y[0]=x[0]+y[-1]=1n = 1 : y[1]=x[1]+y[0]=1n = 2 : y[2]=x[2]+y[1]=0n = 3 : y[3]=x[3]+y[2]=-2n = 4 : y[4]=x[4]+y[3]=-1n = 5 : y[5]=x[5]+y[4]=-1n > 5 : y[n]=-1

Linear Constant-Coefficient DifferenceEquations

15MEH329 Digital Signal Processing

• Block diagram of the accumulator:

Linear Constant-Coefficient DifferenceEquations

16MEH329 Digital Signal Processing

• Example: Moving-average system

Linear Constant-Coefficient DifferenceEquations

17MEH329 Digital Signal Processing

• Block diagram of the moving-average system:

Linear Constant-Coefficient DifferenceEquations

18MEH329 Digital Signal Processing

• Effect of moving-average system

Linear Constant-Coefficient DifferenceEquations

19MEH329 Digital Signal Processing

• Example:

1

, 1 1

y n ay n x n

x n b n y

2

3 2

4 3

0

1

2

3

y a b

y a ab

y a a b

y a a b

1

2

3

4

2

3

4

5

y a

y a

y a

y a

1 , 0n ny n a a b n 1 , 0ny n a n

Linear Constant-Coefficient Difference Equations

20MEH329 Digital Signal Processing

1 , 0n ny n a a b n 1 , 0ny n a n

1n ny n a a bu n

• If b=0 → x[n]=0, but y[n]=an+1 is not equal tozero.

• Therefore, scaling the input with zero is notgives zero output (the system is not linear).

Linear Constant-Coefficient DifferenceEquations

• For the shifted input

MEH329 Digital Signal Processing 21

1 d dx n x n n b n n

11

dn nndy n a a bu n n

1 dy n y n n

• the system is time variant.

Linear Constant-Coefficient DifferenceEquations

22MEH329 Digital Signal Processing

• If y[-1]=0 is given

• The system is linear and time invariant in thiscase (evaluate with ).

• NOTE: Initial conditions of a LCCDE for systemsaffect the characteristics directly!

• In general, x[n]=0, n<0 and initial conditionsare chosen as zero for the causal LTI systems.

ny n a bu n

1x n b n

Linear Constant-Coefficient DifferenceEquations

23MEH329 Digital Signal Processing

• Alternative representation for theaccumulator 1y n ay n x n

2

3 2

1

0

0 1 0

1 0 1 1 0 1 1 0 1

2 1 2 1 0 1 2

1 , 0n

n k

k

y ay x

y ay x a ay x x a y ax x

y ay x a y a x ax x

y n a y a x n k n

Response to the initial conditions Response to the input signal x[n]

Linear Constant-Coefficient DifferenceEquations

• If the system initially relaxed at time n=0y[-1]=0

• Thus a recursive system is relaxed if it starts withzero initial conditions.

• We say that the system is at “zero state” in thiscase.

• The response of the system is called as“ZERO STATE RESPONSE”

24MEH329 Digital Signal Processing

zsy n

Linear Constant-Coefficient DifferenceEquations

25MEH329 Digital Signal Processing

0

, 0n

kzs

k

y n a x n k n

nh n a u n (IIR, causal)

Linear Constant-Coefficient DifferenceEquations

• Suppose that the system is initially nonrelaxedand x[n]=0 for all n.

• Then the output of the system with zero inputis called the

“ZERO INPUT RESPONSE”

26MEH329 Digital Signal Processing

ziy n

1 1nziy n a y

Linear Constant-Coefficient DifferenceEquations

27MEH329 Digital Signal Processing

1

0

1 , 0n

n k

k

y n a y a x n k n

zi zsy n y n y n

Recommended