Practical Session 7

Preview:

DESCRIPTION

Practical Session 7. Substitution-Model Evaluator The Core: applicative- eval Abstract Syntax Parser Derived Expressions Special Form Data Structures Environments-Model. The Evaluator. applicative- eval (substitution-core.rkt). substitute. applicative- eval. apply-procedure. rename. - PowerPoint PPT Presentation

Citation preview

1

Practical Session 7

• Substitution-Model Evaluator– The Core: applicative-eval– Abstract Syntax Parser– Derived Expressions– Special Form– Data Structures

• Environments-Model

2

The Evaluator

3

applicative-eval (substitution-core.rkt)

(define applicative-eval (lambda (exp) (cond ((atomic? exp) (eval-atomic exp)) ((special-form? exp) (eval-special-form exp)) ((list-form? exp) (eval-list exp)) ((evaluator-value? exp) exp) ((application? exp) (apply-procedure (applicative-eval (operator exp)) (list-of-values (operands exp)))) (else (error 'eval "unknown expression type: ~s" exp)))))

applicative-eval apply-procedure

substitute

rename

4

apply-procedure (substitution-core.rkt)

(define apply-procedure (lambda (procedure arguments) (cond ((primitive-procedure? procedure) (apply-primitive-procedure procedure arguments)) ((compound-procedure? procedure) (let ((parameters (procedure-parameters procedure)) (body (rename (procedure-body procedure)))) (eval-sequence (substitute body parameters arguments)))) (else (error 'apply "Unknown procedure type: ~s" procedure)))))

5

ASP- Abstract Syntax Parser

ASPASP

Derived expressions

Derived expressions

Core

Special forms

Data Structures(+GE)

• A “tool“ for handling expressions in the supported language.

• The ASP includes ADTs for every expression: Each includes a constructor, selectors (to extract the components of an expression) and a predicate (to identify the kind of an expression).

•Provides an abstraction barrier between concrete syntax and operational semantics (we can change the concrete syntax and this will not affect the API of the parser, only the implementation. On the other hand, we can change the implementation without affecting the syntax)•No evaluation at this stage!

6

Handling Tags

;; Signature: attach-tag(x, tag);; Type: [LIST*Symbol -> LIST](define attach-tag (lambda (x tag) (cons tag x)))

;; Signature: tagged-list?(x, tag);; Type: [T*Symbol -> Boolean](define tagged-list? (lambda (x tag) (and (list? x) (eq? (get-tag x) tag))))

;; Signature: get-tag(x);; Type: LIST -> Symbol(define get-tag (lambda (x) (car x)))

7

Handling;; Type: [LIST(Symbol)*LIST -> LIST](define make-lambda (lambda (parameters body) (attach-tag (cons parameters body) 'lambda)));; Type: [T -> Boolean](define lambda? (lambda (exp) (tagged-list? exp 'lambda)))

;; Type: [LIST -> LIST(Symbol)](define lambda-parameters (lambda (exp) (car (get-content exp))))

;; Type: [LIST -> LIST](define lambda-body (lambda (exp) (cdr (get-content exp))))

8

Example: supporting case expressions

(define fib (lambda (n) (case n (0 0) (1 1) (else …

Abstract syntax:

<CASE>: Components: Control expression: <EXP> Clause: <CASE_CLAUSE>. Amount>=0. ordered Else-clause: <ELSE_CLAUSE>

Concrete syntax:

<CASE> (case <EXP> <CASE_CLAUSE>* <ELSE_CLAUSE>)<CASE_CLAUSE> (<EXP> <EXP-SEQUENCE>)

9

(define case? (lambda (exp) (tagged-list? exp 'case)))

(define make-case-clause (lambda (compared actions) (cons compared actions)))

Adding the required ADT procedures to the ASP

Example: supporting case expressions

(define make-case (lambda (control case-clauses) (attach-tag (cons control case-clauses) 'case)))(define case-control cadr)

(define case-clauses cddr)

(define case-compared car)

(define case-actions cdr)

(define case-first-clause (lambda (clauses) (car clauses)))(define case-rest-clauses (lambda (clauses) (cdr clauses)))

(define case-last-clause? (lambda (clauses) (and (null? (cdr clauses)) (eq? (case-compared (case-first-clause clauses)) 'else))))

10

Using the ADT we can build a case expression!

Example: supporting case expression

(make-case 'n (list (make-case-clause '0 '(0)) (make-case-clause '1 '(1)) (make-case-clause 'else '( (display 'processing...) (newline) (+ (fib (- n 1)) (fib (– n 2)))))))

Are there any other changes required?... We can identify a case expression, extract its components and build such an expression. But how to we evaluate a case expression?

11

Derived Expressions

Motivation:– Smaller, simpler core– Change in evaluator implementation requires less

work

shallow-derive

derive

12

Derived Expression (1)(define derive (lambda (exp) (if (atomic? exp) exp (let ((derived-exp (let ((mapped-derive-exp (map derive exp))) (if (not (derived? exp)) mapped-derive-exp (shallow-derive mapped-derive-exp))))) (if (equal? exp derived-exp) exp (derive derived-exp))))))

13

Derived Expression (2)(define derived? (lambda (exp) (or (cond? exp) (function-definition? exp) (let? exp) (letrec? exp))))

(define shallow-derive (lambda (exp) (cond ((cond? exp) (cond->if exp)) ((function-definition? exp) (function-define->define exp)) ((let? exp) (let->combination exp)) ((letrec? exp) (letrec->let exp)) (else "Unhandled derivision" exp))))

14

Supporting the evaluation of a case expression

Example: supporting case expression

Is it a compound expression (e0 … en)?Is it a special form?Is it an airplane?

(define eval-special-form (lambda (exp) (cond ((quoted? exp) (make-symbol exp)) ((lambda? exp) (eval-lambda exp)) … ((case? exp) (eval-case exp)) … )

(define special-form? (lambda (exp) (or (quoted? exp) (lambda? exp) (definition? exp) (if? exp) (begin? exp) (case? exp))))

15

Evaluation of a case expression

Example: supporting case expression

Determining the evaluation rule for a case expression:

1. Evaluate the control component

2. Compare its value to each of the compared

components by order (we assume numerical values).

3. Find the first clause (if exists) of which the compared

value equals the control value. Evaluate each of the

actions of this clause.

4. If no such clause exists, evaluate the actions included in

the else-clause by order.

(define fib (lambda (n) (case n (0 0) (1 1) (else …

16

Evaluation of a case expression

Example: supporting case expression

(define (eval-case exp)

(letrec ((eval-clauses

(lambda (control clauses)

(cond ((null? clauses) 'unspecified)

((or (case-last-clause? clauses)

(= (applicative-eval (case-compared (case-first-clause clauses)))

control))

(eval-sequence (case-actions (case-first-clause clauses))))

(else (eval-clauses control (case-rest-clauses clauses)))))))

(eval-clauses

(applicative-eval (case-control exp)) (case-clauses exp))))

17

Data Structues

; Type: [Symbol -> LIST](define make-symbol (lambda (x) (attach-tag (list x) 'symbol)))

; Type: [T -> Boolean](define evaluator-symbol? (lambda (s) (tagged-list? s 'symbol)))

; Type: [LIST -> Symbol](define symbol-content (lambda (s) (car (get-content s))))

18

The environment model

A computational model different than the substitution model.

• Expressions are evaluated with respect to a certain environment.

• Saves substitution (of formal parameters by argument) and renaming.

Definitions:

• Frame: A mapping between variables and values. Every bound variable in a frame is

given one (and only one) value.

• Environment: A finite sequence of Frames (f1,f2,…,fn). The last frame is the Global

Environment, the only frame to statically exist.

x:3y:5

I

z:6x:7

II n:1y:2

III

Env A: (II,I)

Env B: (III,I)

Env C: (I)

19

The environment model

Definitions:

• The value of x (a variable) in e (an environment): is the value of x in the first frame of

e where it is bound to a value.

For example: The value of y in B is 2, the value of y in A is 5. z is unbound in B.

• A procedure in the environment model: is a pair (a closure) of which the first element

stores the procedure parameters and body and the second element stores a “pointer”

to the environment where the procedure was declared.

For example: the variable square is bound to the procedure define in the GE.

x:3y:5

I

z:6x:7

II n:1y:2

III

Env A: (II,I)

Env B: (III,I)

Env C: (I)GE

square:

P:(x)

B:(* x x)

(define (square x) (* x x))

20

The environment model

Procedure application in the GE:

Let f be a procedure with formal parameters (x1 … xn). When applying f to v1 … vn:

• Create a new frame binding the variables x1 … xn to the values v1 … vn respectively.

• This new frame extends the environment E in which f was declared.

This is noted in a diagram by a pointer from the new frame to E.

• E is stored within the closure data structure that was created by evaluating f.

• Evaluate the body of f with respect to the extended environment.

E1

(* x x)

GE

square:

P:(x)

B:(* x x)

x:5

(define (square x)(* x x))(square 5)

21

Example (1)

(define sq (lambda (x) (* x x)))

(define sum-of-squares  (lambda (x y) (+ (sq x) (sq y))))

(define f  (lambda (a)   (sum-of-squares (+ a 1) (* a 2))))

GE

sq:

sum-of-squares:

f:

P:(x)B:(* x x)

P:(x y)B:(+ (sq x) (sq y))

P:(a)B:(sum-of-squares (+ a 1) (* a 2))

22

Example (1)

> (f 5)

GE

sq:

sum-of-squares:

f:

P:(x)B1:(* x x)

P:(x y)B2:(+ (sq x) (sq y))

P:(a)B3:(sum-of-squares (+ a 1) (* a 2))E1

(sum-of-…)

a:5B3

E2

(+ (sq x) (sq y))

x:6y:10

B2

E3

(* x x)

x:6B1

E4

(* x x)

x:10

B1

23

Example (2)

> (define a 8) > (define b 5) > (define c a) > (define f (lambda (x y) (+ x y))) > (f a c)

a: 8

b: 5

c: 8

f:

Parameters: (x y)Body: (+ x y)

x: 8y: 8

E1

(+ x y)

24

Example (2)> (define p (lambda (a b c)

(let ((d (+ a b)) (e (* a b)) (f e d))))

> (p a b 3)

a: 8

b: 5

c: 8

f:

p:

Parameters: (x y)Body: (+ x y)

Parameters: (a b c)Body: (let…)

a: 8b: 5c: 3

E1

(let)…Parameters: (d e)Body: (f e d)

d: 13e: 40

E2

(f e d)

E3x: 13y: 40(+ x y)

25

Example (3)

> (define fact (lambda (n)(if (= n 0) 1 (* n (fact (- n 1))))))

B1

B1

B1

B1

E1

GEfact:

P:(n)B:(if…)

(if …)

n:3E2

(if …)

n:2E3

(if …)

n:1E4

(if …)

n:0

26

Example (4)> (define fact$ (lambda (n c) (if (= n 0) (c 1) (fact$ (- n 1) (lambda (fact-n-1) (c (* n fact-n-1)))))))> (fact$ 2 (lambda(x) x))

GE

fact$:

P:(n c)B:(if…)

P:(x)B: x

n:2c:

P:(fact-n-1)B:(c (* ..)

n:1c:

P:(fact-n-1)B:(c (* ..)

n:0c:

fact-n-1 :1

fact-n-1 :1

x:2