PP-ART-12-2009-000206 Supporting Information-revised · Title: Microsoft Word -...

Preview:

Citation preview

S1

Supporting information

for

Photochemical deuterium exchange in phenyl-

substituted pyrroles and indoles in CD3CN-D2O

By

Nikola Basarić,*a Alfredo Franco-Cea,b Marija Alešković,a Kata Mlinarić-

Majerski,a and Peter Wan*b

a Department of Organic Chemistry and Biochemistry, Bijenička cesta 54, 10 000 Zagreb,

Croatia. Fax: + 385 1 4680 195; Tel: +385 1 4561 141; E-mail: nbasaric@irb.hr

b Department of Chemistry, University of Victoria, Box 3065 Stn CSC, Victoria BC,

V8W3V6, Canada, Fax: + 1 (250) 721-7147, Tel: + 1 (250) 721-8976;

E-mail: pwan@uvic.ca

Electronic Supplementary Material (ESI) for Photochemical & Photobiological SciencesThis journal is © The Royal Society of Chemistry and Owner Societies 2010

S2

Table of contents:

1. Experimental procedure for the preparation of compounds S3

2. 1H NMR spectra after photolyses in deuterated solvents S5

3. Fluorescence study S23

4. Laser flash photolysis S40

S3

1. Experimental procedure for the preparation of compounds N-tert-Butoxycarbonyl-2-phenylpyrrole: To a stirred solution of iodobenzene (193 mg, 0.95

mmol), cesium carbonate (620 mg, 1.89 mmol) and tetrakis(triphenylphosphine)palladium (5

% mol) in toluene (20 mL) at reflux under nitrogen was added a solution of (1-tert-

butyloxycarbonylpyrrol-2-yl)boronic acid1 (200 mg, 0.95 mmol) in the mixture of toluene (10

mL) and methanol (3 mL) during 7 h. The mixture was stirred at reflux for 17 h, cooled and

methanol was evaporated under reduced pressure. To a toluene suspension was added water

(30 mL) and the layers were separated, the water layer was extracted with dichloromethane (3

× 25 mL). Combined organic extracts were washed with water (30 mL) and dried over

anhydrous MgSO4, and evaporated under reduced pressure. The resulting crude product was

purified by chromatography on silica eluting with the mixture of dichloromethane and hexane

(10 → 30%) to yield 185 mg (86 %) of N-tert-Butoxycarbonyl-2-phenylpyrrole as a clear oil.

The 1H NMR and 13C NMR spectra were identical to the literature data.2

2-Phenylpyrrole (8): A suspension of sodium methoxide (freshly prepared by reacting 84 mg

of sodium with 10 mL of methanol) was added to a stirred solution of N-tert-butoxycarbonyl-

2-phenylpyrrole (280 mg, 1.22 mmol) in methanol (40 mL) and stirred at reflux for 3h, and at

25 °C for 15 h. The solvent was evaporated and the residue was portioned between

dichloromethane and water. Water layer was extracted with dichloromethane (2 × 25 mL),

and the combined organic extracts were washed with brine (30 ml). Organic extracts were

dried over anhydrous MgSO4, solvent was evaporated to give 158 mg (90 %) of the product as

a white crystalline solid. The 1H NMR and 13C NMR spectra were identical to the literature

data.2

7-Phenylindole (12): A round bottom flask (50 mL) was charged with 7-bromoindole (255

mg, 1.3 mmol), phenylboronic acid (158 mg, 1.3 mmol),

tetrakis(triphenylphsophine)palladium (40 mg), K2CO3 (300 mg), toluene (10 mL) and

methanol (5 mL). The mixture was heated to reflux for 24 h under N2. During this time, the

orange solution turned to deep purple. After cooling to rt, 30 mL of HCl (1M) was added and

the mixture was extracted with CH2Cl2 (4 × 15 mL). The resulting deep-red organic extracts

were combined and dried over anhydrous MgSO4. The solvent was evaporated on a rotary

evaporator to yield the crude product in the form of dark oil that was purified by column

S4

chromatography on silica gel eluting with a mixture of CH2Cl2 - Hexanes (1:3). The resulting

clear oil crystallized spontaneously upon storage at 10 ºC.

1. S. Martina, V. Enkelmann, G. Wegner, A.-D. Schlüter, Synthesis 1991 613-615.

2. A. Burghart, H. Kim, M. B. Welch, L. H. Thorensen, J. Reibenspies, K. Burgess, J.

Org. Chem. 1999, 64, 7813-7819.

S5

1H NMR spectra after photolyses in deuterated solvents

1H NMR (CD3CN + D2O) after thermal (“dark“) experiment for 7 in CD3CN – D2O SpinWorks 2.3: Nikola NB-159 + D2O

PPM 7.70 7.60 7.50 7.40 7.30 7.20 7.10 7.00 6.90 6.80 6.70 6.60 6.50 6.40 6.30

0.

998

1.

053

1.

075

0.

978

1.

008

0.

980

7.56

25

7.54

94

7.

4196

7.

4187

7.

4061

7.

4051

7.

2445

7.

2393

7.

1193

7.

1176

7.

1059

7.

0940

7.

0926

7.

0271

7.

0257

7.

0140

7.

0128

7.

0007

6.

4427

6.

4385

6.

4377

file: D:\PODACI-Nikola\NMR-Zagreb\N-159\2\fid expt: <zg30>transmitter freq.: 600.133901 MHztime domain size: 32768 pointswidth: 9541.98 Hz = 15.899760 ppm = 0.291198 Hz/ptnumber of scans: 16

freq. of 0 ppm: 600.130013 MHzprocessed size: 32768 complex pointsLB: 0.000 GB: 0.0000

S6

1H NMR (CD3CN + D2O) after photolysis (45min) of 7 at 254 nm in a quartz NMR tube SpinWorks 2.3: Nikola NB-159 + D2O na kraju

PPM 7.70 7.60 7.50 7.40 7.30 7.20 7.10 7.00 6.90 6.80 6.70 6.60 6.50 6.40 6.30

0.

998

1.

049

0.

782

0.

800

0.

913

0.

820

7.

5642

7.

5627

7.

5611

7.

5511

7.

5495

7.

5479

7.

4202

7.

4187

7.

4173

7.

4066

7.

4051

7.

4037

7.

2450

7.

2397

7.

1194

7.

1176

7.

1077

7.

1059

7.

1041

7.

0942

7.

0923

7.

0271

7.

0255

7.

0154

7.

0139

7.

0123

7.

0023

7.

0006

6.

4443

6.

4429

6.

4391

6.

4377

file: D:\PODACI-Nikola\NMR-Zagreb\N-159\4\fid expt: <zg30>transmitter freq.: 600.133901 MHztime domain size: 32768 pointswidth: 9541.98 Hz = 15.899760 ppm = 0.291198 Hz/ptnumber of scans: 24

freq. of 0 ppm: 600.130013 MHzprocessed size: 32768 complex pointsLB: 0.000 GB: 0.0000

S7

1H NMR (CDCl3) after photolysis (2h) of 8 in CH3CN – D2O (1M)

S8

1H NMR (CDCl3) after thermal (“dark“) experiment (2h) for 8 in CH3CN – D2O (1M)

S9

1H NMR (CD3CN) after photolysis (30 min) of 8 in CD3CN – D2O (1M)

S10

1H NMR (CDCl3) after thermal (“dark“) experiment for 8 in CD3CN – D2O (1M)

S11

1H NMR (CD3CN) after photolysis (4h) of 9 in CH3CN – D2O (1M)

S12

1H NMR (CD3CN) after thermal (“dark“) experiment (4h) for 9 in CH3CN – D2O (1M)

S13

1H NMR (CD3CN) after photolysis (30 min) of 9 in CD3CN – D2O (1M)

S14

1H NMR (CD3CN) after thermal (“dark“) experiment (30 min) for 9 in CD3CN – D2O (1M)

S15

1H NMR (CD3CN) after photolysis (30 min) of 9 in CD3CN

S16

1H NMR (CD3CN) after thermal (“dark“) experiment (30 min) for 9 in CD3CN

S17

1H NMR (CD3CN) after photolysis (15 min) of 10 in CD3CN – D2O (1M)

S18

1H NMR (CD3CN) after thermal (“dark“) experiment (15 min) for 10 in CD3CN – D2O (1M)

S19

1H NMR (CD3CN) after photolysis (4 h) of 12 in CH3CN – D2O (1M)

S20

1H NMR (CD3CN) after thermal (“dark“) experiment (4 h) for 12 in CH3CN – D2O (1M)

S21

1H NMR (CD3CN) after photolysis (30 min) of 12 in CD3CN – D2O (1M)

S22

1H NMR (CD3CN) after thermal (“dark“) experiment (30 min) for 12 in CD3CN – D2O (1M)

S23

3. Fluorescence study UV-vis spectra of 2-phenylpyrrole (8), 2-phenylindole (9) and 7-phenylindole (12) in CH3CN.

200 225 250 275 300 325 3500

10000

20000

30000

40000

50000

60000

Absorption spectra in CH3CN

Mol

ar a

bsor

ptio

n co

effic

ient

ε /

M-1cm

-1

Wavelength λ / nm

2-phenylpyrrole 2-phenylindole 7-phenylindole

Excitation and emission spectrum of 2-phenylpyrrole (8) in cyclohexane.

240 260 280 300 320 340 360 380 400 420

2-Phenylpyrrole in cyclohexane

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm

λem = 350 nm λex = 290 nm

Excitation and emission spectrum of 2-phenylpyrrole (8) in CH3CN.

240 260 280 300 320 340 360 380 400 420 440

2-phenylpyrrole in CH3CN

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm

λem = 350 nm λex = 375 nm

S24

Excitation and emission spectrum of 2-phenylpyrrole (8) in CH3OH.

240 260 280 300 320 340 360 380 400 420 440 460

2-Phenylpyrrole in CH3OH

Wavelength λ / nm

λem = 350 nm λex = 290 nm

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Emission spectra of 2-phenylpyrrole (8) in different solvents.

300 325 350 375 400 425 450

2-Phenylpyrrole in different solvents

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm

cyclohexane CH3CN CH3OH

Fluorescence spectra of 2-phenylpyrrole (8) in CH3CN at different H2O content and Stern-Volmer plot of fluorescence quenching by H2O.

300 350 400 450 500

Fluorescece in CH3CN at different H2O content

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm

c(H2O) = 0 M c(H2O) = 20.8 M

0 5 10 15 200,90

0,92

0,94

0,96

0,98

1,00

Φ0/Φ

c (H2O ) / M

S25

Fluorescence quenching of 2-phenylpyrrole (8) in CH3CN-H2O (1:4) by HClO4, and Stern-Volmer plot of the fluorescence quenching by HClO4.

300 350 400 450 500

c(H+)

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm0,0000 0,0005 0,0010 0,0015 0,0020 0,0025 0,0030

1,0

1,1

1,2

1,3

1,4

1,5

1,6

Φ0/Φ

c (H+) / M

Y = A + B * X

Parameter Value Error------------------------------------------------------------A 1,01204 0,00611B 180,78237 3,10335------------------------------------------------------------

R SD N P------------------------------------------------------------0,99721 0,01295 21 <0.0001------------------------------------------------

Relative fluorescence intensity of 2-phenylpyrrole (8) in CH3CN-H2O (4:1) at 358 nm as a function of HClO4 concentration. Red line represents the fitting of the model to the experimental values (black dots) obtained by the factor analysis in the SPECFIT program.

0,000 0,001 0,002 0,003

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

c (HClO4) / M

Relative fluorescence intensity of 2-phenylpyrrole (8) in CH3CN-H2O (4:1) in the protonated and non-protonated form, obtained by the factor analysis in the SPECFIT program.

300 350 400 450 500

Rel

ativ

e Fl

uore

scen

ce In

teni

sty

Wavelenght λ/nm

8 8H+

S26

Fluorescence quenching of 2-phenylpyrrole (8) in CH3CN-H2O (1:4) by NaOH, and Stern-Volmer plot of the fluorescence quenching by NaOH.

300 350 400 450 500

c(OH-)

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm

0,0000 0,0005 0,0010 0,0015 0,0020 0,0025 0,0030

1,0

1,2

1,4

1,6

1,8

2,0

Φ

0 / Φ

c (NaOH) / M

Y = A + B * X

Parameter Value Error------------------------------------------------------------A 0,96782 0,00962B 295,77696 4,76303------------------------------------------------------------

R SD N P------------------------------------------------------------0,99755 0,02039 21 <0.0001-----------------------------------------------------------

Relative fluorescence intensity of 2-phenylpyrrole (8) in CH3CN-H2O (4:1) at 356 nm as a function of NaOH concentration. Red line represents the fitting of the model to the experimental values (black dots), obtained by the factor analysis in the SPECFIT program.

0,0000 0,0005 0,0010 0,0015 0,0020

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

c (NaOH) / M

S27

Excitation and emission spectrum of 2-phenylindole (9) in cyclohexane.

250 300 350 400 450

R

elat

ive

Fluo

resc

ence

Inte

nsity

Wavelength λ / nm

λem = 370 nm λex = 300 nm

2-phenylindole in cyclohexane

Excitation and emission spectrum of 2-phenylindole (9) in chloroform.

250 300 350 400 450 500

R

elat

ive

Fluo

resc

ence

Inte

nsity

Wavelength λ / nm

λem = 360 nm λex = 300 nm

2-phenylindole in CHCl3

Excitation and emission spectrum of 2-phenylindole (9) in CH3CN.

250 300 350 400 450 500

2-phenylindole in CH3CN

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm

λem = 380 nm λex = 300 nm

S28

Excitation and emission spectrum of 2-phenylindole (9) in CH3OH.

250 300 350 400 450 500

R

elat

ive

Fluo

resc

ence

Inte

nsity

Wavelength λ / nm

λem = 380 nm λex = 300 nm

2-phenylindole in CH3OH

Emission spectra of 2-phenylindole (9) in different solvents.

350 400 450 500

R

elat

ive

Fluo

resc

ence

Inte

nsity

Wavelength λ / nm

2-phenylindole in different solvents

cyclohexane CHCl3 CH3CN CH3OH

Fluorescence spectra of 2-phenylindole (9) in CH3CN at different H2O content and Stern-Volmer plot of fluorescence quenching by H2O.

350 400 450 500

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm

Fluorescece in CH3CN different H2O content2-phenylindole

c(H2O) = 0 M c(H2O) = 20.8 M

0 5 10 15 200,93

0,94

0,95

0,96

0,97

0,98

0,99

1,00 2-phenylindole in CH3CN

Φ

0/Φ

c (H2O ) / M

S29

Fluorescence quenching of 2-phenylindole (9) in CH3CN-H2O (1:4) by HClO4, and Stern-Volmer plot of the fluorescence quenching by HClO4.

350 400 450 500

c(H+)

2-phenylindole

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm0,0 0,1 0,2 0,3 0,4 0,5

1,00

1,05

1,10

1,15

1,202-phenylindole

Φ0 /

Φ

c(HClO4) / M

Stern-Volmer plot of the fluorescence quenching of 2-phenylindole (9) in CH3CN-H2O (1:4) by HClO4.

0,00 0,05 0,10 0,15 0,20 0,25 0,30

1,00

1,02

1,04

1,06

1,08

Φ0 /

Φ

c (HClO4) / M

Y = A + B * X

Parameter Value Error------------------------------------------------------------A 0,99285 0,00257B 0,26542 0,01472------------------------------------------------------------

R SD N P------------------------------------------------------------0,9894 0,004 9 <0.0001-----------------------------------------------------

Fluorescence quenching of 2-phenylindole (9) in CH3CN-H2O (1:4) by NaOH, and Stern-Volmer plot of the fluorescence quenching by NaOH.

350 400 450 500

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm

c (OH-)

0,0000 0,0005 0,0010 0,0015 0,0020 0,0025 0,0030

1,00

1,05

1,10

1,15

1,20

2-phenylindole

Φ0/Φ

c(NaOH) / M

S30

Stern-Volmer plot of the fluorescence quenching of 2-phenylindole (9) in CH3CN-H2O (1:4) by NaOH.

0,0000 0,0005 0,0010 0,0015 0,0020 0,0025 0,0030

1,00

1,05

1,10

1,15

1,20

Φ

0/Φ

c(NaOH) / M

Y = A + B * X

Parameter Value Error------------------------------------------------------------A 0,99196 0,00216B 58,97811 1,07022------------------------------------------------------------

R SD N P------------------------------------------------------------0,99689 0,00458 21 <0.0001----------------------------------------------------------

Relative fluorescence intensity of 2-phenylindole (9) in CH3CN-H2O (4:1) at 377 nm as a function of NaOH concentration. Red line represents the fitting of the model to the experimental values (black dots), obtained by the factor analysis in the SPECFIT program.

0,000 0,001 0,002 0,003

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

c (NaOH) / M

S31

Excitation and emission spectrum of N-methyl-2-phenylindole (10) in cyclohexane.

250 300 350 400 450 500

R

elat

ive

Fluo

resc

ence

Inte

nsity

Wavelength λ / nm

λem = 360 nm λex = 300 nm

N-methyl-2-phenylindolecyclohexane

Excitation and emission spectrum of N-methyl-2-phenylindole (10) in CHCl3.

250 300 350 400 450 500

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm

λem = 380 nm λex = 300 nm

N-methyl-2-phenylindoleCHCl3

Excitation and emission spectrum of N-methyl-2-phenylindole (10) in CH3CN.

250 300 350 400 450 500

N-methyl-2-phenylindoleCH3CN

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm

λem = 380 nm λex = 300 nm

S32

Excitation and emission spectrum of N-methyl-2-phenylindole (10) in CH3OH.

250 300 350 400 450 500

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm

λem = 380 nm λex = 300 nm

N-methyl-2-phenylindoleCH3OH

Emission spectra of N-methyl-2-phenylindole (10) in different solvents.

350 400 450 500

R

elat

ive

Fluo

resc

ence

Inte

nsity

Wavelength λ / nm

N-methyl-2-phenylindole

cyclohexane CHCl3 CH3CN CH3OH

Stern-Volmer plot of the fluorescence quenching of N-methyl-2-phenylindole (10) in CH3CN by H2O.

0 5 10 15 20

0,86

0,88

0,90

0,92

0,94

0,96

0,98

1,00 N-methyl-2-phenylindole

Φ0 /

Φ

c(H2O) / M

S33

Fluorescence quenching of N-methyl-2-phenylindole (10) in CH3CN-H2O (1:4) by HClO4, and Stern-Volmer plot of the fluorescence quenching by HClO4.

350 400 450 500

N-methyl-2-phenylindole

c(H+)

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm

0,0 0,1 0,2 0,3 0,4 0,5

1,0

1,1

1,2

1,3

1,4

1,5

1,6

1,7

N-methyl-2-phenylindole

Φ0 /

Φc (HClO4) / M

Stern-Volmer plot of the fluorescence quenching of N-methyl-2-phenylindole (10) in CH3CN-H2O (1:4) by HClO4.

0,00 0,05 0,10 0,15 0,20 0,25

1,00

1,05

1,10

1,15

1,20

Φ

0 / Φ

c (HClO4) / M

Y = A + B * X

Parameter Value Error------------------------------------------------------------A 0,99225 0,00462B 0,82596 0,03368------------------------------------------------------------

R SD N P------------------------------------------------------------0,99587 0,00657 7 <0.0001------------------------------------------------------------

Relative fluorescence intensity of N-methyl-2-phenylindole (10) in CH3CN-H2O (4:1) at 384 nm as a function of HClO4 concentration. Red line represents the fitting of the model to the experimental values (black dots), obtained by the factor analysis in the SPECFIT program.

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

c (HClO4) / M

S34

Fluorescence quenching of N-methyl-2-phenylindole (10) in CH3CN-H2O (1:4) by NaOH, and Stern-Volmer plot of the fluorescence quenching by NaOH.

350 400 450 500

c(OH-)

Wavelength λ / nm

Rel

ativ

e Fl

uore

scen

ce In

tens

ity N-methyl-2-phenylindole

0,000 0,001 0,002 0,003

1,00

1,02

1,04

1,06

1,08

Φ0 /

Φ

c(NaOH) / M

Stern-Volmer plot of the fluorescence quenching of N-methyl-2-phenylindole (10) in CH3CN-H2O (1:4) by NaOH.

0,000 0,001 0,002 0,003

1,00

1,02

1,04

1,06

1,08

1,10

Φ0 /

Φ

c(NaOH) / M

Y = A + B * X

Parameter Value Error------------------------------------------------------------A 1,00971 0,00126B 23,7247 0,6239------------------------------------------------------------

R SD N P------------------------------------------------------------0,99349 0,00267 21 <0.0001------------------------------------------------------------

S35

Excitation and emission spectrum of 7-phenylindole (12) in cyclohexane.

250 275 300 325 350 375 400 425

7-phenylindole in cyclohexane

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm

λ em = 360 nm λ ex = 290 nm

Excitation and emission spectrum of 7-phenylindole (12) in CHCl3.

250 275 300 325 350 375 400 425 450

R

elat

ive

Fluo

resc

ence

Inte

nsity

Wavelength λ / nm

λ em = 350 nm λ ex = 290 nm

7-phenylindole in CHCl3

Excitation and emission spectrum of 7-phenylindole (12) in CH3CN.

250 300 350 400 450 500

R

elat

ive

Fluo

resc

ence

Inte

nsity

Wavelength λ / nm

λ em = 375 nm λ ex = 290 nm

7-phenylindole in CH3CN

S36

Excitation and emission spectrum of 7-phenylindole (12) in CH3OH.

250 300 350 400 450 500

R

elat

ive

Fluo

resc

ence

Inte

nsity

Wavelength λ / nm

λ em = 350 nm λ ex = 290 nm

7-phenylindole in CH3OH

Emission spectra of 7-phenylindole (12) in different solvents.

300 325 350 375 400 425 450Wavelength λ / nm

R

elat

ive

Fluo

resc

ence

Inte

nsity 7-phenylindole

cyclohexane CHCl3 CH3CN CH3OH

Fluorescence spectra of 7-phenylindole (12) in CH3CN at different H2O content and Stern-Volmer plot of fluorescence quenching by H2O.

350 400 450 500

7-phenylindole / CH3CN

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm

c (H2O) = 0 M c (H2O) = 21 M

0 5 10 15 200,90

0,92

0,94

0,96

0,98

1,00

7-phenylindole / CH3CN

Φ 0 /

Φ

c (H2O) / M

S37

Stern-Volmer plot of the fluorescence quenching of 7-phenylindole (12) in CH3CN-H2O (1:4) by HClO4.

0,0000 0,0005 0,0010 0,0015 0,0020 0,0025 0,0030

1,00

1,01

1,02

1,03

1,04

1,05

Φ

0/Φ

c(H+) / M

Y = A + B * X

Parameter Value Error------------------------------------------------------------A 1,00066 0,00107B 15,26137 0,54158------------------------------------------------------------

R SD N P------------------------------------------------------------0,98825 0,00226 21 <0.0001------------------------------------------------------------

Relative fluorescence intensity of 7-phenylindole (12) in CH3CN-H2O (4:1) at 381 nm as a function of HClO4 concentration. Red line represents the fitting of the model to the experimental values (black dots), obtained by the factor analysis in the SPECFIT program.

0,000 0,001 0,002 0,003

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

c (HClO4) / M

Relative fluorescence intensity of 7-phenylindole (12) in CH3CN-H2O (4:1) in the protonated and non-protonated form, obtained by the factor analysis in the SPECFIT program.

350 400 450 500 550

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm

12 12H+

S38

Fluorescence quenching of 7-phenylindole (12) in CH3CN-H2O (1:4) by NaOH, and Stern-Volmer plot of the fluorescence quenching by NaOH.

350 400 450 500 550

c (OH-)

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm

0,0000 0,0005 0,0010 0,0015 0,0020 0,0025 0,00300,9

1,0

1,1

1,2

1,3

1,4

1,5

1,6

1,7 7-phenylindole

Φ

0/Φ

c(NaOH) / M

Stern-Volmer plot of the fluorescence quenching of 7-phenylindole (12) in CH3CN-H2O (1:4) by NaOH.

0,0000 0,0002 0,0004 0,0006 0,0008 0,00100,95

1,00

1,05

1,10

1,15

1,20

1,25

1,30

1,35

7-phenylindole

Φ0/Φ

c(NaOH) / M

Y = A + B * X

Parameter Value Error------------------------------------------------------------A 0,99948 0,0114B 382,8361 20,50278------------------------------------------------------------

R SD N P------------------------------------------------------------0,99573 0,01444 5 3,35277E-4---------------------------------------------------------

Relative fluorescence intensity of 7-phenylindole (12) in CH3CN-H2O (4:1) at 378 nm as a function of NaOH concentration. Red line represents the fitting of the model to the experimental values (black dots), obtained by the factor analysis in the SPECFIT program.

0,000 0,001 0,002 0,003

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

c (NaOH) / M

S39

Relative fluorescence intensity of 7-phenylindole (12) in CH3CN-H2O (4:1) in the neutral and deprotonated form, obtained by the factor analysis in the SPECFIT program.

350 400 450 500 550

Rel

ativ

e Fl

uore

scen

ce In

tens

ity

Wavelength λ / nm

12NH 12N-

S40

4. Laser flash photolysis

Transient absorption spectra of 2-phenylpyrrole (8) in N2-purged CH3CN solution.

300 400 500 600 700 800-0,10

-0,05

0,00

0,05

0,10

0,15

0,20 2-phenylpyrrole in CH3CNN2 purged

Δ A

Wavelength λ / nm

0.55 μs 2.4 μs 5.0 μs 8.0 μs

Transient absorption spectra of 2-phenylpyrrole (8) in O2-purged CH3CN solution.

300 400 500 600 700 800

0,00

0,05

0,10

0,15

0,20

0.55 μs 2.4 μs 5.0 μs 8.0 μs

2-phenylpyrrole in CH3CNO2 purged

Wavelength λ / nm

Δ A

Transient absorption spectrum of 2-phenylpyrrole (8) in O2-purged CH3CN solution 550 ns after the laser pulse.

400 500 600 700 8000,000

0,002

0,004

0,006

0,008

0,010

0,012

0,014

Δ

A

Wavelength λ / nm

2-phenylpyrrole in CH3CNO2 purged 550 ns after the pulse

300 400 500 600 700 800

0,00

0,05

0,10

0,15

0,20

400 500 600 700 8000,000

0,002

0,004

0,006

0,008

0,010

0,012

0,014

Δ

A

Wavelength λ / nm

2-phenylpyrrole in CH3CN

O2 purged

550 ns after the pulse

2-phenylpyrrole in CH3CNO2 purged

Δ A

Wavelength λ / nm

S41

Transient absorption spectra of 2-phenylpyrrole (8) in N2-purged CH3CN-H2O (1:1) solution, pH = 7.

300 400 500 600 700 800-0,05

0,00

0,05

0,10

0,15

0,20

0,25 Ph-py / CH3CN-H

2O 1:1 pH = 7

N2 purged

Δ A

Wavelength λ / nm

0.5 μs 2.2 μs 7.2 μs 16 μs

Transient absorption spectra of 2-phenylpyrrole (8) in O2-purged CH3CN-H2O (1:1) solution, pH = 7.

300 400 500 600 700 800

0,00

0,05

0,10

0,15

0,20

Ph-py / CH3CN-H2O 1:1 pH = 7O2 purged

400 450 500 550 6000,000

0,004

0,008

0,012

0,016

0,020

Δ A

Wavelength λ / nm

0.5 μs 3.1 μs 8.6 μs 16 μs

Δ A

Wavelength λ / nm

0.5 μs 3.1 μs 8.6 μs 16 μs

Transient absorption spectra of 2-phenylpyrrole (8) in N2-purged CH3CN-H2O (1:1) solution, pH = 12.

300 400 500 600 700-0,050

-0,025

0,000

0,025

0,050

0,075

0,100

0,125

0.6 μs 3.1 μs 7.9 μs 16 μs

Δ A

Wavelength λ / nm

Ph-py / CH3CN-H2O 1:1 pH = 12N2 purged

S42

Transient absorption spectra of 2-phenylpyrrole (8) in O2-purged CH3CN-H2O (1:1) solution, pH = 12.

300 400 500 600

0,00

0,05

0,10

0,15

0,20Ph-py / CH3CN-H2O 1:1 pH = 12O2 purged

0.6 μs 3.5 μs 9.3 μs 16 μs

350 400 450 500 550 6000,00

0,01

0,02

Wavelength λ / nm

Δ A

Wavelength λ / nm

Δ A

Transient absorption spectra of 2-phenylindole (9) in N2-purged CH3CN solution.

300 400 500 600 700 800

-0,05

0,00

0,05

0,10

0,15

0,20 2-phenylindole / acnN2 purged

Δ A

Wavelength λ / nm

0.51 μs 2.1 μs 4.9 μs 8.0 μs

Transient absorption spectra of 2-phenylindole (9) in O2-purged CH3CN solution.

300 400 500 600 700 800

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

Wavelength λ / nm

Δ A

0.20 μs 1.1 μs 3.7 μs 8.0 μs

2-phenylindole / acnO2 purged

S43

Transient absorption spectra of 2-phenylindole (9) in N2-purged CH3CN-H2O (1:1) solution.

300 400 500 600 700-0,05

0,00

0,05

0,10

0,15

2-phenylindole / CH3CN-H2O 1:1N2 purged

Δ A

Wavelength λ / nm

0.30 μs 1.3 μs 4.1 μs 7.7 μs

Transient absorption spectra of 2-phenylindole (9) in O2-purged CH3CN-H2O (1:1) solution.

300 400 500 600 700-0,04

-0,02

0,00

0,02

0,04

0,06

0,08

0,10

Δ

A

Wavelength λ / nm

2-phenylindole / CH3CN-H2O 1:1O2 purged

0.30 μs 1.4 μs 4.2 μs 7.8 μs

Transient absorption spectra of N-methyl-2-phenylindole (10) in N2-purged CH3CN-H2O (1:1) solution.

300 400 500 600 700 800-0,05

0,00

0,05

0,10

0,15

0,20N-methyl-2-phenylindole in CH3CN - H2O 1:1N2 purged

Δ A

Wavelength λ / nm

1.1 μs 7.5 μs 23 μs 40 μs

S44

Transient absorption spectra of N-methyl-2-phenylindole (10) in O2-purged CH3CN-H2O (1:1) solution.

300 400 500 600 700-0,04

-0,02

0,00

0,02

0,04

0,06

0,08

0,10

Δ A

Wavelength λ / nm

1.1 μs 7.5 μs 23 μs 40 μs

N-methyl-2-phenylindole in CH3CN - H2O 1:1O2 purged

Transient absorption spectra of 7-phenylindole (12) in N2-purged CH3CN solution.

300 350 400 450 500 550 600 650 700 750-0,05

0,00

0,05

0,10

0,157-phenylindole in CH3CNN2 purged

Δ A

Wavelength λ / nm

1.1 μs 5.1 μs 10 μs 16 μs

Transient absorption spectra of 7-phenylindole (12) in O2-purged CH3CN solution.

300 350 400 450 500 550 600 650 700 750-0,010

-0,005

0,000

0,005

0,010

7-phenylindole in CH3CNO2 purged

Δ A

Wavelength λ / nm

1.0 μs 5.1 μs 10 μs 16 μs

Recommended