PowerPoint Presentation - Molecular Cell...

Preview:

Citation preview

Molecular  Cell  Biology

Ac0n,  including  Principles  of  Assembly

Cooper

Wednesday, August 29, 2012

Introduc0on

Handouts

Readings

• Text

• MiniReviews  -­‐  PDF  files  online

Homework

Wednesday, August 29, 2012

Reading

Textbook  Chapters• Lodish  et  al.,  Molecular  Cell  Biology,  6th  ed.,  2008,  Freeman.  Chaps.  17,  18.

• Pollard  &  Earnshaw,  Cell  Biology,  updated  ed.,  2004,  Saunders.    Chaps.  35-­‐42,  47.

Ar0cles  on  the  Course  Web  Site• Original  Ar0cles

• Reviews

Wednesday, August 29, 2012

Older  Advanced  /  Reference  Materials

1.   Cell  Movements,    2nd  ed.  ,Dennis  Bray,  2001,  Garland.

2.   Guidebook  to  the  Cytoskeletal  and  Motor  Proteins.  Kreis  and  Vale,  eds.  1999,  Oxford  Univ.  Press.

3.   Video  Tape  of  Mo0lity.    Sanger  &  Sanger,  Cell  Mo0lity  &  the  Cytoskeleton,  Video  Supplement  2,  1990.  A  one-­‐hour  tape  of  examples  of  microtubule-­‐based  mo0lity.  Short  segments  shown  in  class.  Available  at  the  Media  Center  in  the  Becker  (medical)  library.

Wednesday, August 29, 2012

Chemotaxis  of  neutrophil  to  bacteria

Wednesday, August 29, 2012

Phagocytosis  of  bacteria  by  Dictyostelium  amoebae

Wednesday, August 29, 2012

Biological  Scope  of  Cell  Mo0lity  &  the  Cytoskeleton

Shape

Transloca0on

Contrac0on

Intracellular  Movements

Mechanical  &  Physical  Proper0es

Wednesday, August 29, 2012

Elements  of  the  Cytoskeleton

Structural  • Filaments  -­‐  Ac0n,  Microtubules,  Intermediate  Filaments,  Sep0ns

• Crosslinkers

Motors

• Ac0n  -­‐  Myosin

• Microtubules  -­‐  Dynein,  Kinesin

Regulators

Wednesday, August 29, 2012

Higher  Order  Structures  and  Func0ons

Ac0n• Muscle  sarcomere

• Epithelial  cell  brush  border

• Cortex  of  mo0le  cells

Microtubules• Cilia  &  Flagella

• Mito0c  spindle  apparatus

• Radiate  from  MTOC  -­‐  organize  membranes

Sep0ns  -­‐  cytokinesis Major  Sperm  Protein  in  nematode  sperm

Wednesday, August 29, 2012

Self-­‐Assembly  by  Proteins  -­‐Entropy  &  the  Hydrophobic  Effect

High  Order  in  Assembled  State  Implies  Lower  Entropy,  which  is  Unfavorable

∆G  =  ∆H  -­‐  T∆S  must  be  <0  for  a  Reac0on  to  Occur

But  ∆H>0,  ∆S>>0  ! Higher  Entropy  =>  Disorder  in  Assembled  State Ordered  Water  on  Hydrophobic  Surface  of  Protein  Subunit  is  Released

Wednesday, August 29, 2012

Self-­‐Assembly  by  Proteins  -­‐  Specificity

Hydrophobic  Surfaces  of  Proteins  Must  Fit  Snugly  to  Exclude  Water

Assorted  Non-­‐covalent  Bonds  • Van  der  Waals

• Coulombic

• H-­‐bond

Wednesday, August 29, 2012

Why  Use  Subunits  to  Make  Large  Molecules?

Efficient  Use  of  the  Genome

Error  Management

Variable  Size

Disassembly  /  Reassembly

Wednesday, August 29, 2012

Equivalence  and  Quasi-­‐Equivalence

Subunits  in  Polymer  Must  be  Indis0nguishable  from  Each  Other

Helical  Arrangement  Produces  Linear  Filament Some  Flexibility  in  Structure  Produces  Loss  of  Equivalence

Quasi-­‐Equivalence:  Similar  with  Distor0on

Wednesday, August 29, 2012

Assembly  of  Helical  Filaments

Add  &  Lose  Subunits  Only  at  Ends

ON  Rate  =  k+  c1  N

OFF  Rate  =  k-­‐  N

c1 = Concentration of Monomers

N = Concentration of Filament Ends

Wednesday, August 29, 2012

Assembly  of  Helical  Filaments

At  Steady  State,  by  Defini0on

• ON  Rate  =  OFF  Rate k+  c1  N  =  k-­‐  N

c1  =  k-­‐  /  k+

Subunit  Concentra0on  is  Constant?!

Wednesday, August 29, 2012

Steady-­‐state  Concentra0ons  of  Polymer  &  Monomer

[Monomer]

[Total]Wednesday, August 29, 2012

Steady-­‐state  Concentra0ons  of  Polymer  &  Monomer

[Monomer]

[Total]Wednesday, August 29, 2012

Steady-­‐state  Concentra0ons  of  Polymer  &  Monomer

[Monomer]

[Polymer]

[Total]Wednesday, August 29, 2012

Steady-­‐state  Concentra0ons  of  Polymer  &  Monomer

[Monomer]

[Polymer]

[Total]

CriticalConcentration

Wednesday, August 29, 2012

Cri0cal  Concentra0on  and  Binding  Affinity

A1 + Nj Nj+1

Ka = [Nj+1]

[Nj]_c1

Wednesday, August 29, 2012

Cri0cal  Concentra0on  and  Binding  Affinity

Ka = 1_c1

Kd = [Nj+1]

[Nj] = _c1

_c1

Wednesday, August 29, 2012

Treadmilling

Polar  Filaments  have  Two  Different  Ends Can  Have  Different  Cri0cal  Concentra0ons  at  the  Two  Ends

Steady  State  Cri0cal  Concentra0on  is  an  Intermediate  Value

Net  Addi0on  at  One  End,  Net  Loss  at  the  Other  End  

Wednesday, August 29, 2012

Microtubule  PhotobleachingExperiment  In  Vivo

Fluorescent Tubulin Microinjected into Cell as Tracer

Laser Bleaches a Vertical Stripe

Wednesday, August 29, 2012

Cells  Regulate  Polymers

Cells  Have  Unexpectedly  High  Concentra0ons  of  Subunits

Cells  Change  their  Subunit  /  Polymer  Ra0o  Drama0cally

Filament  Lengths  in  Cells  are  Short

Wednesday, August 29, 2012

How  do  Cells  Regulate  the  Level  of  Polymeriza0on?

Total  Concentra0on  of  Protein

Covalent  Modifica0on  of  Subunits

Binding  of  Small  Molecules

Binding  of  Another  Protein

Wednesday, August 29, 2012

How  do  Cells  Regulate  the  Number  and  Length  of  Filaments?

Limit  Growth• Intrinsic  to  Protein

• Deplete  Subunits

• Capture  by  Capping  End

• Template

Create  New  Filaments• Nuclea0on  -­‐  End  or  Side

• Bolus  of  Subunits  -­‐  High  Concentra0on

Wednesday, August 29, 2012

Nuclea0on

Crea0on  of  New  Filament  from  Subunits  is  

Unfavorable

Subunit  Prefers  End  of  Filament  to  One  or  Two  Other  Subunits

Allows  Cell  to  Control  Where  &  When  Filaments  

Form

Wednesday, August 29, 2012

“Dynamic  Instability”  of  Microtubules

GFP-tubulin in Cells Pure proteins in vitro

Wednesday, August 29, 2012

Nucleo0des  Can  Generate  “Dynamic  Instability”

The  Basic  Facts...• Tubulin  Binds  GTP  or  GDP

• GTP  Tubulin  Polymerizes  Strongly

• GDP  Tubulin  Polymerizes  Poorly

• Subunits  Exchange  w/  Free  GTP

• GTP  on  Tubulin  Hydrolyzes  to  GDP  over  Time  aqer  Addi0on  to  Microtubule

Wednesday, August 29, 2012

The  Implica0on  of  All  those  Facts,  taken  together  is...

At  Steady  State,  at  any  given  0me...

• Most  Ends  have  a  GTP  “Cap”  and  Grow  Slowly

• A  Few  Ends  

– Lose  their  GTP  Cap

– Exposing  GDP-­‐tubulin  subunits

– so  the  Microtubule  Shrinks  Rapidly Occurs  In  Vitro  and  In  Vivo  for  Tubulin  -­‐  Extensive  and  Relevant

Wednesday, August 29, 2012

Steps  in  Cell  Movement

Extension

Adhesion

Retraction

Lodish et al. Molecular Cell Biology

Wednesday, August 29, 2012

Types  of  Ac0n  Structures  in  a  Migra0ng  Cell

Wednesday, August 29, 2012

Scanning  EM  of  the  Front  of  a  Migra0ng  Cell

Wednesday, August 29, 2012

Small  G-­‐Proteins  Regulate  Different  Assemblies  of  Ac0n

StressFibers

FilopodiaLamellipodia

Wednesday, August 29, 2012

GFP-­‐Ac0n  in  a  Migra0ng  Melanoma  Cell

Text

Wednesday, August 29, 2012

Fish  Keratocyte  -­‐  Gliding  Across  a  Surface

0.1 - 1 µm per second

Wednesday, August 29, 2012

Fish  Keratocytes

Stationary

Wednesday, August 29, 2012

Fish  Keratocytes

MovingStationary

Wednesday, August 29, 2012

Wednesday, August 29, 2012

End-­‐to-­‐Side  Branches

Svitkina et al. 1997.

Wednesday, August 29, 2012

Free  Ends  toward  Direc0on  of  Movement

Svitkina et al. 1997.

Wednesday, August 29, 2012

Arp2/3  Complex  at  Filament  Branches

in vitro

in vivo

Wednesday, August 29, 2012

Arp2/3  Complex  Structure,  at  a  Filament  Branch  Point

Hanein, Robinson & Pollard. 2001.

Wednesday, August 29, 2012

Creation & Growth

Wednesday, August 29, 2012

Termination

Wednesday, August 29, 2012

Destruction & Recycling

Wednesday, August 29, 2012

Model  for  Listeria  Ac0n  Mo0lity

Jon Alberts. Center for Cell Dynamics, Friday Harbor, U Wash. CellDynamics.Org.

Wednesday, August 29, 2012

Model  for  Listeria  Ac0n  Mo0lity

Jon Alberts. Center for Cell Dynamics, Friday Harbor, U Wash. CellDynamics.Org.

Wednesday, August 29, 2012

Model  for  Listeria  Ac0n  Mo0lity

Jon Alberts. Center for Cell Dynamics, Friday Harbor, U Wash. CellDynamics.Org.

Wednesday, August 29, 2012

Fluorescence  Microscopy  of  Living  Cells

GFP  technology  -­‐  colors,  aggrega0on,  mul0ple  labels,  FRET

Sensi0ve  video  cameras  -­‐  increased  0me  un0l  bleaching• Speed  and  sensi0vity

Confocality• Laser  scanning          •Spinning  disk

• Two-­‐photon                    •TIRF

Wednesday, August 29, 2012

Speckles  to  Single  Molecules

Wednesday, August 29, 2012

Evidence  for  Single  Molecules

Fluorescence Intensity of Single Speckles over Time

Wednesday, August 29, 2012

Speckle  Microscopy  in  Living  Cells

Wednesday, August 29, 2012

Two-­‐Color  Speckle  Microscopy

Microtubules

Actin

Wednesday, August 29, 2012

TIRF  (Total  Internal  Reflec0on  Fluorescence)  Microscopy

Wednesday, August 29, 2012

Watching  Single  Ac0n  Filaments  Polymerize

Wednesday, August 29, 2012

Movies  of  Ac0n  Filaments  Polymerizing

Wednesday, August 29, 2012

Ac0n  Assembly  Regulators

Bind  Monomers Cap  Ends  of  Filaments

• Barbed,  Pointed Bind  Sides  of  Filaments

• Univalent,  Divalent

Wednesday, August 29, 2012

Monomer  Binding  Proteins

Thymosin• Very  small  protein

• Binds  0ghtly

• Simple  buffer

Profilin• Small  protein

• S0mulates  exchange  of  ADP  to  ATP

• Promotes  /  permits  addi0on  at  Barbed  Ends

Wednesday, August 29, 2012

Barbed  End  Binding  Proteins

Capping  Protein

• Terminates  growth  of  free  barbed  ends

• Enables  “funneling”  to  free  barbed  ends  in  Dendri0c  Nuclea0on  Model

• Nuclea0on  ac0vity  in  vitro  -­‐  probably  irrelevant  in  vivo

Wednesday, August 29, 2012

Barbed  End  Binding  Proteins

Gelsolin

• Severs  filaments,  as  well  as  caps

• Needs  high  Ca2+

• Knockout  mouse  grossly  normal,  but  cells  show  poor  

induced  ac0n  polymeriza0on

• Extracellular  (plasma)  version  -­‐  respond  to  cell  

necrosis

Wednesday, August 29, 2012

Barbed  End  Binding  Proteins

Formins• Cap,  Nucleate  and  Bind  near  Barbed  Ends

• Variable  Level  of  Capping

– Ac0n  can  add,  unlike  “Capping  Protein”

• Variable  Level  of  Inhibi0on  of  Binding  of  Capping  Protein

• Profilin  Combina0on  -­‐  Increases  Ac0n  Polym  Rate

• Proper0es  Combine  to  Keep  Barbed  Ends  Growing  

Longer

Wednesday, August 29, 2012

Formin  Mechanism

Formin

Capping Protein

Wednesday, August 29, 2012

Formin:  Caps  and  Grows

Wednesday, August 29, 2012

Formin  Mechanism

Wednesday, August 29, 2012

Pointed  End  Binding  Proteins

Tropomodulin

• Caps  pointed  end  in  muscle  sarcomere

• Caps  much  beter  if  tropomyosin  present

• Role  in  nonmuscle  cells  uncertain

Wednesday, August 29, 2012

Arp2/3  Complex

Complex  of  7  proteins,  including  two  ac0n-­‐related  proteins

Wednesday, August 29, 2012

Arp2/3  Complex

Caps  pointed  end  and  nucleates  with  barbed  end  free

Wednesday, August 29, 2012

Arp2/3  Complex

Binds  side  of  filaments  at  same  0me,  crea0ng  branching  network

Wednesday, August 29, 2012

Side  Binding  Proteins

Univalent  -­‐  Tropomyosin

• Inhibits  depolymeriza0on

• Makes  filament  stronger

Divalent

• Crosslinkers  -­‐  Filamin/ABP,  α-­‐ac0nin

• Bundlers  -­‐  Fimbrin,  Fascin

Wednesday, August 29, 2012

Cofilin

Complicated  Mechanism• Severs  filaments

• Binds  monomers

Essen0al  for  Viability Present  in  High  Concentra0ons Regulated  by  a  Specific  Kinase

Wednesday, August 29, 2012

Model  for  Ac0n  Polymeriza0on  in  Cells

Wednesday, August 29, 2012

Wiskot-­‐Aldrich  Syndrome

Human  gene0c  disease:  X-­‐linked  recessive

Immunodeficiency,  thrombocytopenia

T  and  B  cells  and  platelets  have  abnormal  shape  and  mo0lity

Gene  product,  WASp,  ac0vates  Arp2/3

Wednesday, August 29, 2012

Ac0va0on  of  WASp

Wednesday, August 29, 2012

Dorsal  Closure  of  the  Drosophila  Embryo

Wednesday, August 29, 2012

Wednesday, August 29, 2012

Filopodial  Forma0on

Thin  extensions Bundle  of  long  unbranched  ac0n  filaments Can  arise  from  an  Arp2/3  branched  network Inhibit  capping  in  one  region  

• Formins

• Inhibitors  of  Capping  Protein

Wednesday, August 29, 2012

Ac0n-­‐binding  Toxins  Used  in  Experiments

Cytochalasin

• Caps  Barbed  Ends

• Permeates  Cells

Latrunculin

• Binds  (Sequesters)  Ac0n  

Monomers

• Permeates  Cells

Phalloidin

• Binds  Ac0n  Filaments– Induces  Polymeriza0on

– Fluorescent  Deriva0ves  for  

Microscopy

• Not  Permeant

Jasplakinolide

• Binds  Ac0n  Filaments

• Permeates  Cells

Wednesday, August 29, 2012

End

Wednesday, August 29, 2012

Recommended