Power System Stability Training...

Preview:

Citation preview

1

Power System StabilityTraining Course

DIgSILENT GmbH

Fundamentals on Power System Stability 2

General Definitions

2

Fundamentals on Power System Stability 3

• „Stability“ - general definition:

Ability of a system to return to a steady state after a disturbance.

• Small signal effects• Large signal effects (nonlinear dynamics)

• Power System Stability - definition according to CIGRE/IEEE:• Rotor angle stability (oscillatory, transient-stability)• Voltage stability (short-term, long-term, dynamic)• Frequency stability

Power System Stability

Fundamentals on Power System Stability 4

Ability of a power system to compensate for a power deficit:1. Inertial reserve (network time constant)

Lost power is compensated by the energy stored in rotating masses of all generators -> Frequency decreasing

2. Primary reserve:Lost power is compensated by an increase in production of primary controlled units. -> Frequency drop partly compensated

3. Secondary reserve:Lost power is compensated by secondary controlled units. Frequency and area exchange flows reestablished

4. Re-Dispatch of Generation

Frequency Stability

3

Fundamentals on Power System Stability 5

• Frequency disturbance following to an unbalance in active power

Frequency Deviation according to UCTE design criterion

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0,1

-10 0 10 20 30 40 50 60 70 80 90

dF in Hz

t in s

Rotor Inertia Dynamic Governor Action Steady State Deviation

Frequency Stability

Fundamentals on Power System Stability 6

• Mechanical Equation of each Generator:

• ∆P=ω∆T is power provided to the system be each generating unit.• Assuming synchronism:

• Power shared according to generator inertia

nn

elmelm

PPPTTJωω

ω ∆=

−≈−=&

j

i

j

i

ini

JJ

PP

PJ

=∆∆

∆=ωω &

Inertial Reserve

4

Fundamentals on Power System Stability 7

• Steady State Property of Speed Governors:

• Total frequency deviation:

• Multiple Generators:

• Power shared reciprocal to droop settings

( )∑∑ ∆

=∆⇒∆=∆i

totitot K

PffKP

i

j

j

i

jjii

RR

PP

PRPR

=∆∆

∆=∆

PRPK

ffKP iii

ii ∆=∆=∆⇒∆=∆1

Primary Control

Fundamentals on Power System Stability 8

Turbine 1

Turbine 2

Turbine 3

Generator 1

Generator 2

Generator 3

Network

Secondary Control

PT PG

PT PG

PT PG

f PA

Set Value

Set Value

Set Value

Contribution

• Bringing Back Frequency• Re-establishing area exchange flows• Active power shared according to participation factors

Secondary Control

5

Fundamentals on Power System Stability 9

Frequency drop depends on:• Primary Reserve• Speed of primary control• System inertia

Additionally to consider:• Frequency dependence of load

In case of too severe frequency drops:• Load shedding

Frequency Stability

Fundamentals on Power System Stability 10

20.0015.0010.005.000.00 [s]

1.025

1.000

0.975

0.950

0.925

0.900

0.875

G 1: Turbine Power in p.u.G2: Turbine Power in p.u.G3: Turbine Power in p.u.

20.0015.0010.005.000.00 [s]

0.125

0.000

-0.125

-0.250

-0.375

-0.500

-0.625

Bus 7: Deviation of the El. Frequency in Hz

DIgSILENT Nine-bus system MechanicalSudden Load Increase

Date: 11/10/2004

Annex: 3-cycle-f. /3

DIg

SILE

NT

Frequency Stability

6

Fundamentals on Power System Stability 11

• Dynamic Simulations

• Sometimes possible: Inertial/Primary controlled or secondary controlled load flows

Frequency Stability - Analysis

Fundamentals on Power System Stability 12

Small signal rotor angle stability (Oscillatory stability)Ability of a power system to maintain synchronism under small

disturbances

– Damping torque– Synchronizing torque

Especially the following oscillatory phenomena are a concern:– Local modes– Inter-area modes– Control modes– Torsional modes

Rotor Angle Stability

7

Fundamentals on Power System Stability 13

Small signal rotor angle stability (Oscillatory stability) is a system property

Small disturbance -> analysis using linearization around operating point

Analysis using eigenvalues and eigenvectors

Rotor Angle Stability

Fundamentals on Power System Stability 14

Large signal rotor angle stability (Transient stability)Ability of a power system to maintain synchronism during severe

disturbances

– Critical fault clearing time

Large signal stability depends on system properties and the type of disturbance (not only a system property)

– Analysis using time domain simulations

Rotor Angle Stability

8

Fundamentals on Power System Stability 15

3.2342.5871.9401.2940.650.00 [s]

200.00

100.00

0.00

-100.00

-200.00

G1: Rotor angle with reference to reference machine angle in deg

DIgSILENT Transient Stability Subplot/Diagramm

Date: 11/11/2004

Annex: 1 /3

DIg

SILE

NT

4.9903.9922.9941.9961.000.00 [s]

25.00

12.50

0.00

-12.50

-25.00

-37.50

G1: Rotor angle with reference to reference machine angle in deg

DIgSILENT Transient Stability Subplot/Diagramm

Date: 11/11/2004

Annex: 1 /3

DIg

SILE

NT

Transient Stability

Fundamentals on Power System Stability 16

Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance.

• Small disturbance voltage stability (Steady state stability)– Ability to maintain steady voltages when subjected to small

disturbances

• Large signal voltage stability (Dynamic voltage stability)

– Ability to maintain steady voltages after following large disturbances

Voltage Stability

9

Fundamentals on Power System Stability 17

- Dynamic models (short-term), special importance on dynamic load modeling, stall effects etc.

Short-Term

- P-V-Curves (load flows)of the faulted state.- Long-term dynamic models including tap-changers, var-control, excitation limiters, etc.

- P-V-Curves (load flows)- dv/dQ-Sensitivities- Long-term dynamic models including tap-changers, var-control, excitation limiters, etc.

Long-Term

Large-Signal- System fault- Loss of generation

Small-Signal:- Small disturbance

Voltage Stability - Analysis

Fundamentals on Power System Stability 18

151.30138.80126.30113.80101.3088.80

1.10

1.00

0.90

0.80

0.70

0.60

0.50

x-Axis: U_P-Curve: Total Load of selected loads in MWAMBOWS51: Voltage, Magnitude in p.u.ANGONS51: Voltage, Magnitude in p.u.BELLES51: Voltage, Magnitude in p.u.BISSES51: Voltage, Magnitude in p.u.BISSES61: Voltage, Magnitude in p.u.

PV-curves U_P-Curve

Date: 11/11/2004

Annex: 1 /1

DIg

SILE

NT

Small-Signal Voltage Stability –PV-Curves

10

Fundamentals on Power System Stability 19

20.0015.0010.005.000.00 [s]

1.25

1.00

0.75

0.50

0.25

0.00

-0.25

APPLE_20: Voltage, Magnitude in p.u.SUMMERTON_20: Voltage, Magnitude in p.u.LILLI_20: Voltage, Magnitude in p.u.BUFF_330: Voltage, Magnitude in p.u.

DIg

SILE

NT

Fault with loss of transmission line

Large-Signal Long-TermVoltage Instability

Fundamentals on Power System Stability 20

• Dynamic voltage stability problems are resulting from sudden increase in reactive power demand of induction machine loads.

-> Consequences: Undervoltage trip of one or several machines, dynamic voltage collapse

• Small synchronous generators consume increased amount of reactive power after a heavy disturbance -> voltage recovery problems.

-> Consequences: Slow voltage recovery can lead to undervoltagetrips of own supply -> loss of generation

Dynamic Voltage Stability

11

Fundamentals on Power System Stability 21

1.201.161.121.081.041.00

3.00

2.00

1.00

0.00

-1.00

x-Axis: GWT: Speed in p.u.GWT: Electrical Torque in p.u.

1.201.161.121.081.041.00

0.00

-2.00

-4.00

-6.00

-8.00

x-Axis: GWT: Speed in p.u.GWT: Reactive Power in Mvar

DIg

SILE

NT

Dynamic Voltage Stability –Induction Generator (Motor)

Fundamentals on Power System Stability 22

1.041.031.021.011.00

3.00

2.00

1.00

0.00

-1.00

x-Axis: GWT: Speed in p.u.GWT: Electrical Torque in p.u.

Constant Y = 1.000 p.u. 1.008 p.u.

1.041.031.021.011.00

0.00

-1.00

-2.00

-3.00

-4.00

-5.00

-6.00

x-Axis: GWT: Speed in p.u.GWT: Reactive Power in Mvar

Constant X = 1.008 p.u.

-1.044 Mvar

DIg

SILE

NT

Dynamic Voltage Stability –Induction Generator (Motor)

12

Fundamentals on Power System Stability 23

2.001.501.000.500.00 [s]

1.20

1.00

0.80

0.60

0.40

0.20

0.00

G\HV: Voltage, Magnitude in p.u.MV: Voltage, Magnitude in p.u.

2.001.501.000.500.00 [s]

80.00

40.00

0.00

-40.00

-80.00

-120.00

Cub_0.1\PQ PCC: Active Power in p.u.Cub_0.1\PQ PCC: Reactive Power in p.u.

2.001.501.000.500.00 [s]

1.06

1.04

1.02

1.00

0.98

GWT: Speed

DIg

SILE

NT

Dynamic Voltage Stability –Induction Generator (Motor)

Fundamentals on Power System Stability 24

3.002.001.000.00 [s]

60.00

40.00

20.00

0.00

-20.00

-40.00

Cub_0.1\PQ RedSunset: Active Power in p.u.Cub_0.1\PQ RedSunset: Reactive Power in p.u.

3.002.001.000.00 [s]

60.00

40.00

20.00

0.00

-20.00

-40.00

Cub_0.2\PQ BlueMountain: Active Power in p.u.Cub_0.2\PQ BlueMountain: Reactive Power in p.u.

3.002.001.000.00 [s]

60.00

40.00

20.00

0.00

-20.00

-40.00

-60.00

Cub_1.1\PQ GreenField: Active Power in p.u.Cub_1.1\PQ GreenField: Reactive Power in p.u.

3.002.001.000.00 [s]

1.125

1.000

0.875

0.750

0.625

0.500

0.375

GLE\1: Voltage, Magnitude in p.u.GLZ\2: Voltage, Magnitude in p.u.WDH\1: Voltage, Magnitude in p.u.

DIg

SILE

NT

Dynamic Voltage Collapse

13

Fundamentals on Power System Stability 25

3.002.001.000.00 [s]

1.20

1.00

0.80

0.60

0.40

0.20

0.00

HV: Voltage, Magnitude in p.u.MV: Voltage, Magnitude in p.u.

3.002.001.000.00 [s]

120.00

80.00

40.00

0.00

-40.00

-80.00

-120.00

Cub_1\PCC PQ: Active Power in p.u.Cub_1\PCC PQ: Reactive Power in p.u.

DIg

SILE

NT

Dynamic Voltage Stability –Voltage Recovery (Synchronous Generators)

Fundamentals on Power System Stability 26

Time Domain Simulation

14

Fundamentals on Power System Stability 27

Fast Transients/Network Transients:Time frame: 10 mys…..500ms

LighteningSwitching OvervoltagesTransformer Inrush/Ferro ResonanceDecaying DC-Components of short circuit currents

Transients in Power Systems

Fundamentals on Power System Stability 28

Medium Term Transients / Electromechanical TransientsTime frame: 400ms….10s

Transient StabilityCritical Fault Clearing TimeAVR and PSSTurbine and governorMotor startingLoad Shedding

Transients in Power Systems

15

Fundamentals on Power System Stability 29

Long Term Transients / Dynamic PhenomenaTime Frame: 10s….several min

Dynamic StabilityTurbine and governorPower-Frequency ControlSecondary Voltage ControlLong Term Behavior of Power Stations

Transients in Power Systems

Fundamentals on Power System Stability 30

Stability/EMT

Different Network Models used:

Stability:

EMT:

ILjV ω= VCjI ω=

dtdiLv =

dtdvCi =

16

Fundamentals on Power System Stability 31

Short Circuit Current EMT

0.50 0.38 0.25 0.12 0.00 [s]

800.0

600.0

400.0

200.0

0.00

-200.0

4x555 MVA: Phase Current B in kA

Short Circuit Current with complete model (EMT-model) Plots

Date: 4/25/2001

Annex: 1 /1

DIg

SILE

NT

Fundamentals on Power System Stability 32

Short Circuit Current RMS

0.50 0.38 0.25 0.12 0.00 [s]

300.0

250.0

200.0

150.0

100.0

50.00

0.00

4x555 MVA: Current, Magnitude in kA

Short Circuit Current with reduced model (Stability model) Plots

Date: 4/25/2001

Annex: 1 /1

DIg

SILE

NT

17

Fundamentals on Power System Stability 33

(X)X

X0

Dynamic voltage stabilitySelf excitation of ASM

X(X)HVDC dynamicsX0Switching Over Voltages

X0Transformer/Motor inrush(X)XAVR and PSS dynamics

((X))XOscillatory stability

XX

X0

Torsional oscillationsSubsynchronous resonance

(X)X

X0

Dynamic motor startupPeak shaft-torque

(X)XCritical fault clearing time

EMT-SimulationRMS-SimulationPhenomena

RMS-EMT-Simulation

Fundamentals on Power System Stability 34

Rotor Angle Stability

Fundamental Concepts

18

Fundamentals on Power System Stability 35

One Machine Problem

DIgSILENT

PowerFactory 12.1.178

Example

Power System Stability and Control One Machine Problem

Project: Training Graphic: Grid Date: 4/19/2002 Annex: 1

G ~ G1

Gen

222

0MV

A/2

4kV

(1)

1998

.000

MW

967.

920

Mva

r53

.408

kA

1.16

3 p.

u.-0

.000

p.u

.

Trf500kV/24kV/2220MVA

-199

8.00

MW

-634

.89

Mva

r2.

56 k

A

1998

.00

MW

967.

92 M

var

53.4

1 kA

CCT 2Type CCT186.00 km

-698

.60

MW

30.4

4 M

var

0.90

kA

698.

60 M

W22

1.99

Mva

r0.

90 k

A

CCT1Type CCT100.00 km

-129

9.40

MW

56.6

2 M

var

1.67

kA

1299

.40

MW

412.

90 M

var

1.67

kA

V ~

Infin

ite S

ourc

e

-199

8.00

MW

87.0

7 M

var

2.56

kA

Infin

ite B

us50

0.00

kV

450.

41 k

V0.

90 p

.u.

0.00

deg

HT

500.

00 k

V47

2.15

kV

0.94

p.u

.20

.12

deg

LT24

.00

kV24

.00

kV1.

00 p

.u.

28.3

4 de

g

DIg

SILE

NT

Fundamentals on Power System Stability 36

One Machine Problem

0E

ePX

'GE

19

Fundamentals on Power System Stability 37

One Machine Problem

• Power transmission over reactance:

• Mechanical Equations:

0

0

ωωϕωω

ω

−=

−≈

−=

G

emem PPPPJ

&

&

( )

( )( )GGG

e

GG

e

EEXEQ

XEEP

ϕ

ϕ

cos

sin

0'

'

'0

−=

=

Fundamentals on Power System Stability 38

One Machine Problem

• Differential Equation of a one-machine infinite bus bar system:

• Eigenvalues (Characteristic Frequency):

• Stable Equilibrium points (SEP) exist for:

GGGm

Gm

G

PPPPPJ ϕϕ

ωϕ

ωωϕ

ωωϕ ∆⎟⎟

⎞⎜⎜⎝

⎛−−≈−= 0

0

max0

0

max

00

max

0

cossinsin&&

00

max2/1 cos GJ

P ϕω

λ −±=

0cos 0 >Gϕ

20

Fundamentals on Power System Stability 39

Small Signal Stability

180.0144.0108.072.0036.00 0.00

4000.

3000.

2000.

1000.

0.00

-1000...

x-Axis: Plot Power Curve: Generator Angle in degPlot Power Curve: Power 1 in MWPlot Power Curve: Power 2 in MW

Pini y=1998.000 MW

DIgSILENT Single Machine Problem P-phi

Date: 4/19/2002

Annex: 1 /4

DIg

SILE

NT

SEP UEP

Fundamentals on Power System Stability 40

Transient Stability

• Energy Function:

• At Maximum Angle:

( ) 0)(21

0

2 =+=−

+ ∫ potkinem

G EEdPPJG

ϕω

ϕϕ

ϕ

&

0max =Gϕ&

0)(max

0

=−

= ∫ ϕω

ϕ

ϕ

dPPEG

empot

( )0=kinE

21

Fundamentals on Power System Stability 41

Equal Area Criterion

180.0144.0108.072.0036.000.00

4000.

3000.

2000.

1000.

0.00

-1000...

x-Axis: Plot Power Curve: Generator Angle in degPlot Power Curve: Power 1 in MWPlot Power Curve: Power 2 in MW

DIgSILENT Single Machine Problem P-phi Date: 4/19/2002

Annex: 1 /4

DIg

SILE

NT

E1

E2

0ϕ cϕ

maxϕ

SEP UEP

critϕPm

Fundamentals on Power System Stability 42

Equal Area Criterion

21 EE −=

∫=c

dPE m

ϕ

ϕ

ϕω

0

11

( )∫ −=max

)sin(1max2

ϕ

ϕ

ϕϕω

c

dPPE m

Stable operation if:

22

Fundamentals on Power System Stability 43

Equal Area Criterion

)(101 ϕϕ

ω−= cmPE

)cos(cos)( maxmax

max2 ccm PPE ϕϕ

ωϕϕ

ω−+−=

000 cossin)2(cos ϕϕϕπϕ −−=c

Setting and equating E1 and -E2:0ϕπϕ −=crit

Fundamentals on Power System Stability 44

Critical Fault Clearing Time

• During Short Circuit:

• Differential Equation:

• Critical Fault Clearing Time:

02

02ϕ

ωϕ += c

mc t

JP

0=eP

0ωϕ m

GPJ =&&

23

Fundamentals on Power System Stability 45

Voltage Stability

Fundamental Concepts

Fundamentals on Power System Stability 46

0E

eQX

'GE

( )

( )( )GGG

e

GG

e

EEXEQ

XEEP

ϕ

ϕ

cos

sin

0'

'

'0

−=

=

Voltage Stability

24

Fundamentals on Power System Stability 47

1762.641462.641162.64862.64562.64262.64

1.40

1.20

1.00

0.80

0.60

0.40

x-Achse: SC: Blindleistung in MvarSC: Voltage in p.u., P=1400MWSC: Voltage in p.u., P=1600MWSC: Voltage in p.u., P=1800MWSC: Voltage in p.u., P=2000MW

P=2000MW

P=1800MW

P=1600MW

P=1400MW

DIg

SILE

NT

const. P, variable Q

Voltage Stability – Q-V-Curves

Fundamentals on Power System Stability 48

1350.001100.00850.00600.00350.00100.00

1.00

0.90

0.80

0.70

0.60

0.50

x-Achse: U_P-Curve: Total Load of selected loads in MWKlemmleiste(1): Voltage in p.u., pf=1Klemmleiste(1): Voltage in p.u., pf=0.95Klemmleiste(1): Voltage in p.u., pf=0.9

pf=1

pf=0.95

pf=0.9

DIg

SILE

NT

const. Power factor, variable P

Voltage Stability – P-V-Curves

25

Fundamentals on Power System Stability 49

Dynamic Stability / Eigenvalue Analysis

Fundamental Concepts

Fundamentals on Power System Stability 50

Small signal analysis

• Linear model automatically generated by linearizing the stability model.

• Calculation of eigenvalues, eigenvectors and participation factors

• Calculation of all modes using QR-algorithm -> limited to systems up to 500..1000 state variables

• Calculation of selected modes using implicitly restarted Arnoldi method -> application to large systems (released in Summer 2001)

26

Fundamentals on Power System Stability 51

Small signal analysis

• Linear System Representation:

• Transformation:

• Transformed System

• Diagonal System

bAxx +=&

xTx ~=

TbxTATx += − ~~ 1&

TbxDx += ~~&

Recommended