POPULATION DYNAMICS AND COMMUNITY ECOLOGY OF ZOOPLANKTON

Preview:

Citation preview

POPULATION DYNAMICS AND COMMUNITY ECOLOGY OF ZOOPLANKTON

Range of Food Sizes for Flagellates

Seasonal and Vertical Changes in Grazing

Rotifer Population DynamicsComparison between simulated and observed population and clonal dynamics. Simulated (A and B) and observed (C–F) population dynamics of total algal cells (open circles, 2 × 106 cells per liter) and rotifers (open diamonds, females per liter) and clonal frequency dynamics of defended clone (UTEX 265, solid squares) and competitive clone (UTEX 396, solid triangles). (C and D) Chemostat results using 80 μM nitrogen medium. (E and F) Chemostat results using 160 μM nitrogen medium. Both chemostats run at a dilution rate, δ, of 0.85.

Justin R. Meyer*, Stephen P. Ellner, Nelson G. Hairston, Jr., Laura E. Jones, and Takehito Yoshida. 2006. PNAS. 103(28): 10690-10695.

Fig. 3. – Abundance of L. decipiens, B. variabilis and K. tropica in the Schelde estuary in 2002. Stations in the Schelde are denoted according to their distance (in km) to the mouth, at Vlissingen. Stations in the tributaries were called “Ru” for Rupel, “Du” for Durme, “De” for Dender and “Bo” for Boven Schelde. The black line indicates the brackish area of the estuary.

Frédéric Azémar, Stefan Van Damme, Patrick Meire & Micky Tackx . 2007. Brit. J. Zool. 2013: 75-83.

Keratella tropica

Fig. 7. – Diversity of patterns in posterior spines of Keratella tropica in the Schelde estuary.

Frédéric Azémar, Stefan Van Damme, Patrick Meire & Micky Tackx . 2007. Brit. J. Zool. 2013: 75-83.

How do the three taxa of zooplankton occupy the same lake?

Polymorphism of Brachionus in response to Asplanchna

Figures 16-24 to 16-26Daphnia galeata and Leptodora kintdii

Population density of Daphnia galeata mendotae in Base Line Lake

Base Line Lake, MI

General Model of Seasonal Succession

Simona, M., A. Barbieri, M. Veronesi, S. Malusardi, and V. Straskrabova. 1999. Seasonal dynamics of plankton in a mountain lake in the southern Alps. J. Limnol. 58(2): 169-178.

Fig. 7. Seasonal changes of zooplankton abundance [animals m-2].

Fig. 8. Seasonal changes of zooplankton biomass [mg fresh weight m-2].

Hairston, N. G., Jr., and E. J. Olds. 1986. Partial photoperiodic control of diapause in three populations of the freshwater copepod Diaptomus sanguineus. Biological Bulletin 171:135-142.

Life Cycle of Cyclops scutifer

Life Cycle of Diaptomus reighardi

Often see coexistence of several congenerics.

Mechanisms which promote their coexistence:• Seasonal separation• Vertical separation• Size differences in prey

An oxbow (Varza Lake) was examined for vertical migration by zooplankters

Rejas, D., L. de Meester, L. Ferrufino, M. Maldonado, and F. Ollevier. 2007. Diel vertical migration of zooplankton in an Amazonian varzea lake. Studies on Neotropical Fauna and Environment. 42(1): 71-81.

Vertical Migration by Microcrustaceans

Figure 3. Vertical distribution of the microcrustacean taxa (Mesocyclops and Notodiaptomus) in Laguna Bufeos. Abundance is expressed as percentage of total number of individuals in vertical profile. White bars: day; dark bars: night. Error bars equal twice the standard error of the mean.

Rejas, D., L. de Meester, L. Ferrufino, M. Maldonado, and F. Ollevier. 2007. Diel vertical migration of zooplankton in an Amazonian varzea lake. Studies on Neotropical Fauna and Environment. 42(1): 71-81.

Vertical Migration by RotifersFigure 4. Vertical distribution of the rotifer taxa in Laguna Bufeos. Abundance is expressed as percentage of total number of individuals in vertical profile. White bars: day; dark bars: night. Error bars equal twice the standard error of the mean.

Rejas, D., L. de Meester, L. Ferrufino, M. Maldonado, and F. Ollevier. 2007. Diel vertical migration of zooplankton in an Amazonian varzea lake. Studies on Neotropical Fauna and Environment. 42(1): 71-81.

Rangel, L.M., L.H.S. Silva, M.S. Arcifa, and A. Perticarrari. 2009. Driving forces of the diel distribution of phytoplankton functional groups in a shallow tropical lake. Brazilian Journal of Biology. 69(1): doi: 10.1590/S1519-69842009000100009.

Sarvala, J. 1998. Ecology and the role of benthic copepods in northern lakes. Journal of Marine Systems. 15: 75-86.

Fig. 4. Daily production of certain species of benthic copepods in Lake Pääjärvi (Sarvala, unpublished). (a) Attheyella crassa at 2 m depth. (b) Moraria brevipes at 2 m depth. (c) Bryocamptus echinatus at 40 m depth.

Vertical distribution of Daphnia retrocurva in Lake Michigan

Orientation of Daphnia relative to the shore and open water

Horizontal distribution of rotifer and crustacean zooplankters in a Swedish lake

The Alewife in Crystal Lake, Conn

Trophic production in plankton and nekton in Lake Erken

Lacustrine food web

Zooplankton production in Mirror Lake, NH

Zooplankton production in Mirror Lake, NH

Summary for Zooplankton in Freshwater Systems

Rivers Reservoirs Lakes

Zooplankton community structure

Dominated by small forms with rapid, mostly benthic, life cycles

Gradient from riverine to lacustrine forms

Complex communities with protistan mesozooplankton and macrozooplankton

Zooplankton community development

Low development; mainly derived from lakes and floodplain

Highest development in transitional zone

Vertical and seasonal gradients; stable and abundant

Zooplankton feeding Mainly particulate detritus; some planktonic or benthic algae

Detritus and phytoplankton

Phytoplankton dominant food source

Zooplankton growth Low, but highest in high-order streams; limited by displacement by unidirectional flow

Low to moderate; but variable with changing food availability and quality

Moderate to high

Recommended