Polymers and biopolymers in micro- and nanotechnology · Polymers and biopolymers in micro- and...

Preview:

Citation preview

Polymers and biopolymers in micro- and nanotechnology

What are micro- and nanotechnology about ?

• Majour goals • Representative examples from microtechnology• Representative examples from nanotechnology

What are the materials used in micro- and nanotechnology?

• Silicon, metals, semiconductors and inorganics• Polymers, organic materials

Polymers and biopolymers in micro- and nanotechnology

What are the technologies used in micro- and nanosciences?

• Structuring technologies• Analytical techniques• Self assembly

What is the biological input to micro- and nanotechnology?

• Biomimetic strategies• Biophysical techniques

What are the visionary goals of nanotechnology ?

History of nanotechnology

Ultrathin gold layers ( 100 nm)

History of nanotechnology

Technological applications of nanoobjects

Colloidal colours in glases –Optical properties of nanoparticles

History of nanotechnologyDie herrliche rote Farbe der kolloiden Goldlösung hat die Technik schon seit vielen Jahrhunderten im Goldrubinglas benutzt, das, wie Zsigmondy und Siedentopf mit Hilfe des Ultramikroskops bewiesen haben, feste Teilchen metallischen Goldes als färbende Substanz enthält (im Ultramikroskop erscheinen diese Goldteilchen als grünglänzende Scheibchen). Man stellt das echte Rubinglas her, indem man zur Glasmasse Chlorgold zufügt. Bei rascherem Abkühlen erhalt man ein farb-loses Glas; erhitzt man von neuem, bis das Glas erweicht, so läuft es plötzlich prachtvoll rubinrot an. Schlechtes Rubinglas dagegen wird beim Wiedererhitzen blau, violett und rosa; das Ultramikroskop zeigt hier viel hellere und viel weiter voneinander entfernte Teilchen, die im blauen Glase kupferrot, im violetten Glase gelb und dort, wo das Glas rosa ist, grün glänzen.Die Bedeutung der Kolloide für die TechnikK. Arndt in Kolloid Zeitschrift S. 1 (1909)

History of nanotechnology

Justus Liebig: 1843 Preparation of silver mirrors

Michael Farady: 1856 Preparation of ultrathin layers

Observation of red „gold solutions“ as by product

History of nanotechnology

Analysis of nanoobjects

Zsigmondy Ultramicroscope – 1900Single particle observation

Scattered light

Nanoparticles

History of nanotechnology

Faraday’s „solutions“ are no real solutions(Tyndal Faraday effect)

History of nanotechnology

Physical properties of nanoobjects

Einstein - Smoluchowki – 1905Diffusion of nanoparticles

Diffusion

Making money with nanotechnology

Au Sol particles (6 nm) : 25 ml , 0.01 % HAuCl4 : 92 €Au 1 Oz : ......

Au 1 Oz : 400 €

Science Fiction ?Lets build a small world

Complex structures of a small world

/ 10 7 / 10 8

Polymers and nanotechnologyConformation and size of single macromolcules

Freely jointed chain (Frei drehbare Kette):

(Valenzwinkelkette)

(Valenzwinkelkette mit gehinderter Rotation)

Micro- and nanostructures through lithographic approaches

L. Jay Guo,*,† Xing Cheng,† and Chia-Fu Chou*,‡

NANO LETTERS 2004 Vol. 4, No. 1 69-73

Polymers and nanotechnology

Polymer coil

Nanoparticle Carbonnanotube

Polymer rod

5 nm – 20 nm 1 nm – 100 nm

Softmatter

Size and shape of objects

Hard material

can change are fixed

Single colloidal objects

Polymers and nanotechnologyConformation and size of single macromolcules

End-to-end distance (Fadenendenabstand)

Radius of gyration (Trägheitsabstand)

Persistence length (Persistenzlänge)

Polymers and nanotechnology

Self assembly

can change are fixed

Assemblies of nanoobjects

Ion channels

Functionallity

Micro- and nanostructures through self-assembly

Micro- and nanostructures through lithographic approaches

L. Jay Guo,*,† Xing Cheng,† and Chia-Fu Chou*,‡

NANO LETTERS 2004 Vol. 4, No. 1 69-73

Micro- and nanotechnology as multidisciplinary fields

Molecular- / Cell- Biology

Chemistry

Engineering sciences

Physics

Micro- and nanotechnology as multidisciplinary fields

Physics

Fundamentals for structuring technologies

Short wavelength radiation from synchrotons

Micro- and nanotechnology as multidisciplinary fields

Physics

Single molecule physics

Moving single molecules

Micro- and nanotechnology as multidisciplinary fields

Physics

Fundamentals for new analytical techniques

SXM (AFM) SXM (SNOM)

Micro- and nanotechnology as multidisciplinary fields

Chemical tuning of surfaces

Control of Wettability

Chemistry

Spatial control of Reactivity

Micro- and nanotechnology as multidisciplinary fields

Design of complex structures (for new high tech applications)

Chemistry

Colloidal particles and their assemblyColloidosomes

A. D. Dinsmore, et al. Science 298, 1006 (2002)

Micro- and nanotechnology as multidisciplinary fields

Nature as lecturer – Biomimetic approach

Chemistry

Micro- and nanotechnology as multidisciplinary fields

Nature as lecturer – Molecular motors in biology (translation & rotation)

Molecular- / Cell- Biology

Micro- and nanotechnology as multidisciplinary fields

Man-machine interfacingIntegrating biological function into microsystems

Engineering sciences

Neuron attached to a microchip(MPI Martinsried- Munich)

2‘ nd lecture 09.11.2009

Lithographical MethodsPhysical Principles

TechnologiesMaterials

Polymers in micro- and nanotechnology

3d structures2d structuresLateral structures

DNA Chip Microfluidic channel

Top down technologies for micro-/nanostructure preparation

2d,3d Electronbeam & Optical, X-ray Lithography,

2d,3d Soft-Lithography

2d AFM based Lithography (dip pen, SNOM,..)

Ebeam and optical lithography

Substrate

Resist layer

Resist layerPositive resist

(becomes soluble upon irradiation)Negative resist

(becomes insoluble upon irradiation)

Pattern transfer

Irradiation

Wetting of (polymer) solutions on solid substrates

ω ~ 0 deg. Spreading

0 < ω < 90 deg. Wetting

ω > 90 deg. Non-wetting

Wetting and dewetting of thin polymer (liquid films) on solidsubstrates

Stability of thin films on surfaces

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534

SiSiOPolymerfilm

dh

h: thickness of polymer filmd: Thickness of SiO layer

Stability of thin films on surfaces on variable SiO interface

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534

Optical lithography

Thick layer resist technology : High aspect ratios

Optical lithography

Thick layer resist technology : High aspect ratios

H

I(d)

I(d) = I * exp- ε * d

Inhomogeneous irradiation of polymer due to strong optical absorption (H > 100 µm)

Optical lithography

T-BOC cleavage

Acid catalyst negative resist

Alkaline development

Chemically amplified negative resist

3‘ rd lecture 25.10.2010

Optical lithography

Lenses for ArF laser sources (198 nm)

Structure resolution 80 nm

Increasing na to ~ 1.3

Optical lithography

Resist for 157 nm VUV Lithography

Optical lithography

Two-photon lithography for complex 3d structures

Optical lithography

Two-photon lithography for complex 3d structures

Optical lithographyin aqueous solutions

Jhaveri, et. al. Chem. Mater. 2009, 21 (10), 2004 ff.

Optical lithography2 Photon photoabsorption

Optical lithographyin aqueous solutions

Jhaveri, et. al. Chem. Mater. 2009, 21 (10), 2004 ff.

Maskless optical lithography - A simple setup

Musgraves et. al. Am. J. Phys. 2005, 73 (10), 980 ff.

100 µm lines 500 µm pitch

Maskless optical lithography – 3d stereolithography

Choi et. al. J. Mat. Process. Tech. 209, 2009, 5494 ff.

Kidney scaffold

DMD chip element

Monk et. al. Microelectronic Eng., 27, 1995, 489 ff.

Optical lithography in µ-fluidic systems – Particle assembly

Chung et. al. Nature Materials 7, 2008, 581 ff.

Multi-LED array

Grossmann et. al. J. Neural Eng., 11, 2010, 016004 ff.

Ebeam lithography Penetration depth of electrons with different energies

Ebeam lithography Resolution down to 8 nm (A. Tilke LMU München) – Resist: Calixarene

Ebeam lithography SCALPEL Technique

Synchroton lithography / SynchrotonX-rays

Synchroton lithography / Mask productionX-rays

Polymer embossing

Embossing machine(Jenoptik)

Process stepsCycle time ~ 7 minutes

Heating of substrate and tools above Tg

Application of pressure (~ kN)

Cooling of substrate and embossingtool below Tg

Removal of tool

Microdropdeposition

Polydimethylsiloxane (PDMS) - The material

Chemical modification by hydrosilylation

(-O-CH2-CH2)- EO

Hydrophilic

Polydimethylsiloxane (PDMS) - The material

Jessamine Ng Lee, Cheolmin Park,† and George M. Whitesides*

Anal. Chem.2003, 75,6544-6554

Liquid filling of a capillary by Surface interactions

S. Stark,Microelectronic Eng. 67/68, 229 (2003)

S. Stark,Microelectronic Eng. 67/68, 229 (2003)

Liquid filling of a capillary by Surface interactions

Polydimethylsiloxane (PDMS) - The material

Compression mold 2 N/mm2

Compression mold 9.7 N/mm2

Schmid,H. Macromolecules 33, 3042 (2000)

Permeation induced flow in PDMS channels

P. Silberzan, Europhys. Letters 68, 412 (2004)

TIRF measurement of particle velocity near surfaces

K.Breuer2003 ASME International Mechanical Engineering Congress & ExpositionWashington, D.C., November 16-21, 2003

TIRF measurement of particle velocity near surfaces

K.Breuer2003 ASME International Mechanical Engineering Congress & ExpositionWashington, D.C., November 16-21, 2003

Softlithographic techniques

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡J. AM. CHEM. SOC. 2004, 126, 7744-7745

Softlithographic techniques

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡J. AM. CHEM. SOC. 2004, 126, 7744-7745

UV induced radical polymerisation of polyurethaneacrylates

Rigiflex lithography

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡J. AM. CHEM. SOC. 2004, 126, 7744-7745

Rigiflex lithography

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡J. AM. CHEM. SOC. 2004, 126, 7744-7745

PDMS based complex microfluidic systems

S. Quake,Science 298, 580 (2002)

Multilayer µ-fluidic systems

a) Fluidic transport layer

b) Control layer

Complex shaped 3d nanoparticles

S.E.A. Gratton et al. / Journal of Controlled Release 121 (2007) 10–18

Larken E. Euliss, Julie A. DuPont, Stephanie Gratton and Joseph DeSimoneChem. Soc. Rev., 2006, 35, 1095–1104

Complex shaped 3d nanoparticles

Jason P. Rolland,† Benjamin W. Maynor,† Larken E. Euliss,† Ansley E. Exner,†Ginger M. Denison,† and Joseph M. DeSimoneJ. AM. CHEM. SOC. 9 VOL. 127, NO. 28, 2005 10099

Complex shaped 3d nanoparticles

Larken E. Euliss, Julie A. DuPont, Stephanie Gratton and Joseph DeSimoneChem. Soc. Rev., 2006, 35, 1095–1104

Recommended