Point processes on the line . Nerve firing

Preview:

DESCRIPTION

Point processes on the line . Nerve firing. Stochastic point process . Building blocks Process on R {N(t)}, t in R, with consistent set of distributions Pr{N(I 1 )=k 1 ,..., N(I n )=k n } k 1 ,...,k n integers  0 I's Borel sets of R. - PowerPoint PPT Presentation

Citation preview

Point processes on the line. Nerve firing.

Stochastic point process. Building blocks

Process on R {N(t)}, t in R, with consistent set of distributions

Pr{N(I1)=k1 ,..., N(In)=kn } k1 ,...,kn integers 0

I's Borel sets of R.

Consistentency example. If I1 , I2 disjoint

Pr{N(I1)= k1 , N(I2)=k2 , N(I1 or I2)=k3 }

=1 if k1 + k2 =k3

= 0 otherwise

Guttorp book, Chapter 5

Points: ... -1 0 1 ...

discontinuities of {N}

N(t) = #{0 < j t}

Simple: j k if j k

points are isolated

dN(t) = 0 or 1

Surprise. A simple point process is determined by its void probabilities

Pr{N(I) = 0} I compact

Conditional intensity. Simple case

History Ht = {j t}

Pr{dN(t)=1 | Ht } = (t:)dt r.v.

Has all the information

Probability points in [0,T) are t1 ,...,tN

Pr{dN(t1)=1,..., dN(tN)=1} =

(t1)...(tN)exp{- (t)dt}dt1 ... dtN

[1-(h)h][1-(2h)h] ... (t1)(t2) ...

Parameters. Suppose points are isolated

dN(t) = 1 if point in (t,t+dt]

= 0 otherwise

1. (Mean) rate/intensity.

E{dN(t)} = pN(t)dt

= Pr{dN(t) = 1}

j g(j) = g(s)dN(s)

E{j g(j)} = g(s)pN(s)ds

Trend: pN(t) = exp{+t} Cycle: + cos(t+) 0

t

N dssptNE 0 )()}({

Product density of order 2.

Pr{dN(s)=1 and dN(t)=1}

= E{dN(s)dN(t)}

= [(s-t)pN(t) + pNN (s,t)]dsdt

Factorial moment

tvu

NN dudvvuptNtNE,0

),(]}1)()[({

Autointensity.

Pr{dN(t)=1|dN(s)=1}

= (pNN (s,t)/pN (s))dt s t

= hNN(s,t)dt

= pN (t)dt if increments uncorrelated

Covariance density/cumulant density of order 2.

cov{dN(s),dN(t)} = qNN(s,t)dsdt st

= [(s-t)pN(s)+qNN(s,t)]dsdt generally

qNN(s,t) = pNN(s,t) - pN(s) pN(t) st

Identities.

1. j,k g(j ,k ) = g(s,t)dN(s)dN(t)

Expected value.

E{ g(s,t)dN(s)dN(t)}

= g(s,t)[(s-t)pN(t)+pNN (s,t)]dsdt

= g(t,t)pN(t)dt + g(s,t)pNN(s,t)dsdt

2. cov{ g(j ), h(k )}

= cov{ g(s)dN(s), h(t)dN(t)}

= g(s) h(t)[(s-t)pN(s)+qNN(s,t)]dsdt

= g(t)h(t)pN(t)dt + g(s)h(t)qNN(s,t)dsdt

Product density of order k.

t1,...,tk all distinct

Prob{dN(t1)=1,...,dN(tk)=1}

=E{dN(t1)...dN(tk)}

= pN...N (t1,...,tk)dt1 ...dtk

kkk

ttk dtdtttptNE ...),...,(})({ 1100

)(

Proof of Central Limit Theorem via cumulants in i.i.d. case.

Normal distribution facts.

1. Determined by its moments

2. Cumulants of order 2 identically 0

Y1, Y2, ... i.i.d. mean 0, variance 2, all moments, E{Yk}

k=1,2,3,4,... existing

Sn = Y1 + Y2 + ... + Yn E{Sn } = 0 var{ Sn} = n 2

cumr Sn = n r cumr Y = cum{Y,...,Y}

cumr {Sn / n} = n r / nr/2

0 for r = 3, 4, ...

2 r = 2 as n

Cumulant density of order k.

t1,...,tk distinct

cum{dN(t1),...,dN(tk)}

= qN...N (t1 ,...,tk)dt1 ...dtk

Stationarity.

Joint distributions,

Pr{N(I1+t)=k1 ,..., N(In+t)=kn} k1 ,...,kn integers 0

do not depend on t for n=1,2,...

Rate.

E{dN(t)=pNdt

Product density of order 2.

Pr{dN(t+u)=1 and dN(t)=1}

= [(u)pN + pNN (u)]dtdu

Autointensity.

Pr{dN(t+u)=1|dN(t)=1}

= (pNN (u)/pN)du u 0

= hN(u)du

Covariance density.

cov{dN(t+u),dN(t)}

= [(u)pN + qNN (u)]dtdu

"Estimation of the second-order intensities of a bivariate stationary point process," Journal of the Royal Statistical Society B Vol. 38 (1976), pp. 60-66

Algebra/calculus of point processes.

Consider process {j, j+u}. Stationary case

dN(t) = dM(t) + dM(t+u)

Taking "E", pNdt = pMdt+ pMdt

pN = 2 pM

)()()(2)]()([)(

)(

)()(2)]()([)(

/)}]()({

)}()({)}()({)}()({[

/)}()({)()(

uvpuvpvppuvuvvp

tusp

utsptspptusutstsp

dsdtutdMusdME

tdMusdMEutdMsdMEtdMsdME

dsdttdNsdNEtsppts

MMMMMMMNN

MM

MMMMMNN

NNN

Taking "E" again,

Association. Measuring? Due to chance?

Are two processes associated? Eg. t.s. and p.p.

How strongly?

Can one predict one from the other?

Some characteristics of dependence:

E(XY) E(X) E(Y)

E(Y|X) = g(X)

X = g (), Y = h(), r.v.

f (x,y) f (x) f(y)

corr(X,Y) 0

Bivariate point process case.

Two types of points (j ,k)

Crossintensity.

Prob{dN(t)=1|dM(s)=1}

=(pMN(t,s)/pM(s))dt

Cross-covariance density.

cov{dM(s),dN(t)}

= qMN(s,t)dsdt no ()

Mixing.

cov{dN(t+u),dN(t)} small for large |u|

|pNN(u) - pNpN| small for large |u|

hNN(u) = pNN(u)/pN ~ pN for large |u|

|qNN(u)|du <

See preceding examples

The Fourier transform. regularity conditions

Functions, A(), - < <

|A()|d finite

FT. a(t) = exp{it)A()d

Inverse A() =(2)-1 exp{-it} a(t) dt

unique

C()= A() + B()

c(t) = c(t) + b(t)

2 1

Convolution (filtering).

d(t) = b(t-s) c( s)ds

D() = B()C()

Discrete FT.

a(t) = exp{-i2ts/T} A(2s/T) s, t = 0,1,...,T-1

A(2s/T) =T-1 exp {i2st/T) a(t)

FFTs exist

Dirac delta.

H() () d = H(0)

exp {it}() d = 1

inverse

() = (2)-1 exp {-it}dt

Power spectral density. frequency-side, , vs. time-side, t

/2 : frequency (cycles/unit time)

|| largefor 21

~

)(}exp{21

21

)]()(}[exp{21

)(

N

NNN

NNNNN

p

duuquip

duuqpuuif

Non-negative

Unifies analyses of processes of widely varying types

Examples.

Spectral representation. stationary increments - Kolmogorov

)(}exp{/)(

)(1}exp{

)(

N

N

dZitdttdN

dZiit

tN

})(){(},cov{

increments orthogonal

)()()}(),(cov{

order of spectrumcumulant

...),...,()...()}(),...,({

)()}({

)()(dZ valued,-complex random, :

111...11

N

YX

NNNN

KKNNKKNN

N

NN

YXEYX

ddfdZdZ

K

ddfdZdZcum

ddZE

dZZ

Algebra/calculus of point processes.

Consider process {j, j+u}. Stationary case

dN(t) = dM(t) + dM(t+u)

Taking "E", pNdt = pMdt+ pMdt

pN = 2 pM

)()()(2)]()([)(

)(

)()(2)]()([)(

/)}]()({

)}()({)}()({)}()({[

/)}()({)()(

uvpuvpvppuvuvvp

tusp

utsptspptusutstsp

dsdtutdMusdME

tdMusdMEutdMsdMEtdMsdME

dsdttdNsdNEtsppts

MMMMMMMNN

MM

MMMMMNN

NNN

Taking "E" again,

Association. Measuring? Due to chance?

Are two processes associated? Eg. t.s. and p.p.

How strongly?

Can one predict one from the other?

Some characteristics of dependence:

E(XY) E(X) E(Y)

E(Y|X) = g(X)

X = g (), Y = h(), r.v.

f (x,y) f (x) f(y)

corr(X,Y) 0

Bivariate point process case.

Two types of points (j ,k)

Crossintensity.

Prob{dN(t)=1|dM(s)=1}

=(pMN(t,s)/pM(s))dt

Cross-covariance density.

cov{dM(s),dN(t)}

= qMN(s,t)dsdt no ()

Recommended