Paweł Moskal on behalf of the KLOE-2 collaboration Prospects of KLOE-2 in hadron physics

Preview:

Citation preview

Paweł Moskal on behalf of the KLOE-2 collaboration

Prospects of KLOE-2 in hadron physics

KLOE-2 intends to conduct investigations at the frontier of particle and hadron physics

searching for the phenomena beyond the applicability of

Quantum Mechanics and

Standard Model of Particle Physics

Since nothing is more pleasurable than to falsify the theory !!

I thought… the scientific theories were not the digest of observation,but that they were inventions-conjectures boldly put forward for trialto be eliminated if they clashed with observation … David Hume

DANE e+e- collider Frascati (Rome)

• e+e s ~ m = 1019.4 MeV

e

e+

DeteDetecctor KLOEtor KLOE

γ

’ γ

1.3 %

0.006%

KLOEKLOE completed data taking in 2005 with 2.5 fb completed data taking in 2005 with 2.5 fb-1-1

corresponding to ~ 8 ∙ 10corresponding to ~ 8 ∙ 1099 , ~ 10 , ~ 1088 and ~ 5 ∙ 10~ 5 ∙ 1055 ’

KLOE K LOng Experiment

e+ e-

Drift chamberGas: 90% He + 10% C4H10

δpt / pt < 0.4% (θ>45°)σxy ≈ 150 μm ; σz ≈ 2 mm

Electromagnetic calorimeterlead/scintillating fibers98% solid angle coverageσΕ / E = 5.7% / √(E(GeV))σt = 57 ps / √(E(GeV)) 100 ps⊕PID capabilities

5

New interaction scheme implemented: large beam crossing angle + sextupoles for crabbed waist optics

Lnew ~ 3 Lold

∫Ldt = 1 pb-1/hour

Still space for improvements

New scheme

Old scheme

DAFNE luminosity upgrade

KLOE-2

New Interaction Region KLOE KLOE-2 2.5 fb-1 5 fb-1

γγ γγ

STEP 0 2010-2011 The machine commissioning starts by the end of June

- interaction:

e+e- → e+e- * * → e+e- + X

STEP 0 KLOE-2

LET: E=160-230 MeV Inside KLOE detector

LYSO+SiPM

E<10% for E>150 MeV

HET: E > 400 MeV

11 m from IP

Scintillators + PMTs

MeV

T ~ 200 ps

KLOE-2

STEP 1 KLOE -2 2011

New Interaction Region + Inner Tracker

KLOE KLOE-2 2.5 fb-1 Step 0: 5 fb-1

Step 1: 20 fb-1

Klong Klong/Kshort/η,η΄

γγ γγ 10.3 s equivalent to a factor of 3-4 in statistics

C-GEM

QCALT

CCAL

• Tests of descrete symmetries (CP, CPT, …)

• Tests of quantum mechanics -time-evolution of the entangled pairs of neutral kaons -passive kaonic quantum eraser (unique at KLOE)

• Universality of the weak interaction of leptons and

quarks•Lepton universality Search for possible deviations from SM expectation of (K±e)/(K) to 0.4%

precision

• Investigations of the structure of the scalar mesons• Gamma gamma interaction

• Study of the muon anomalous magnetic moment αµ

and the evolution of the fine structure constant αem

determination of the excitation function for the e+e- → hadrons • Dark Matter : search for narrow di-lepton resonances

Selected examples of investigations planned by the KLOE-2

KLOE-2 Physics Programme arXiv:1003.3868 EPJC (2010) in print

• Tests of descrete symmetries (CP, CPT, …)

• Tests of quantum mechanics -time-evolution of the entangled pairs of neutral kaons -passive kaonic quantum eraser (unique at KLOE)

•Universality of the weak interaction of leptons and

quarks•Lepton universality Search for possible deviations from SM expectation of (K±e)/(K) to 0.4%

precision

• Investigations of the structure of the scalar mesons• Gamma gamma interaction

• Study of the muon anomalous magnetic moment αµ

and the evolution of the fine structure constant αem

determination of the excitation function for the e+e- → hadrons • Dark Matter : search for narrow di-lepton resonances

Selected examples of investigations planned by the KLOE-2

KLOE-2 Physics Programme arXiv:1003.3868 EPJC (2010) in print

- interaction: e+e- → e+e- * * → e+e- + X

Lint = 1 fb-1

( → X)= Lint

dNX

dW

dLdW

STEP 0 KLOE-2

- physics:

KLOE-2 can improve fractional accuracy from 20% to 2%

- interaction:

Run at s ≥ 1.2 GeV required

KLOE-2 expectation Measuring η′ BRs with 1% accuracy

• Tests of descrete symmetries (CP, CPT, …)

• Tests of quantum mechanics -time-evolution of the entangled pairs of neutral kaons -passive kaonic quantum eraser (unique at KLOE)

•Universality of the weak interaction of leptons and

quarks•Lepton universality Search for possible deviations from SM expectation of (K±e)/(K) to 0.4%

precision

• Investigations of the structure of the scalar mesons• Gamma gamma interaction

• Study of the muon anomalous magnetic moment αµ

and the evolution of the fine structure constant αem

determination of the excitation function for the e+e- → hadrons • Dark Matter : search for narrow di-lepton resonances

Selected examples of investigations planned by the KLOE-2

KLOE-2 Physics Programme arXiv:1003.3868 EPJC (2010) in print

Test of non-CKM CP Violation

CP conservation implies N(φ) = N(180 – φ)

13.6 ± 2.5 (stat) ± 1.2 (syst)%KTeV PRL 84 (2000) 408

e+e- φ γ -e+e-

10-3 10-12-10-15

e+e- φ γ -e+e-

PL B675 (2009) 283

Theoretical predictions up to 2% and with KLOE-2 0.8 % precision is expected

Test of discrete symmetries with decays

→ γ ( C ) < 1.6 x 105 at 90% CL (PLB 591, 49)

→ ( P , CP ) < 1.3 x 105 at 90% CL (PLB 606, 276)

At KLOE-2, these limits can be improved by factor of 50.

Existing new physics models allow

BR’s only at the level of ~ 1012 1015

these will become the best limits on C and P symmetries conservation in elementary particle’s decays (see PDG08)

KLOE has published the best limits based on a statistics of ~ 400 pb1:

LORENTZ SYMMETRY, UNITARITY, LOCALITY C P T

G. Lüders, Ann. Phys. 2 (1957) 1.; Ann. Phys. 281 (2000) 1004 „Proof of the TCP theorem”

Tests of CPT symmetry

Semileptonic decay identify strengeness content therefore

Asymmetry of KS,L e signals a CP violation

3

SS

SSS 102.9)9.6(1.5

)νπΓ(Kν)πΓ(K

)νπΓ(Kν)πΓ(KA

ee

ee

AS AL 0 implies CPT violation

PL B636 (2008) 1730.41 fb-1

|KS(t)> = e-λst|KS>|KL(t)> = e-λLt|KL>

|KS> ≈ (1+εs)|K0> + (1-εs)|K0>|KL> ≈ (1+εL)|K0> + (1-εL)|K0>

• Tests of descrete symmetries (CP, CPT, …)

• Tests of quantum mechanics -time-evolution of the entangled pairs of neutral kaons -passive kaonic quantum eraser (unique at KLOE)

•Universality of the weak interaction of leptons and

quarks•Lepton universality Search for possible deviations from SM expectation of (K±e)/(K) to 0.4%

precision

• Investigations of the structure of the scalar mesons• Gamma gamma interaction

• Study of the muon anomalous magnetic moment αµ

and the evolution of the fine structure constant αem

determination of the excitation function for the e+e- → hadrons • Dark Matter : search for narrow di-lepton resonances

Selected examples of investigations planned by the KLOE-2

KLOE-2 Physics Programme arXiv:1003.3868 EPJC (2010) in print

φ:JCP = 1-- e+e- φ |KS,p>|KL,-p> -|KS,-p>|KL,p>

no simultaneous decays (t=0) in the samefinal state due to thedestructive quantum interference

t/S

I(t

) (a

.u) mfrom

here

cos2;, 2/ tmeeetI ttt LSSL

Kaon interferometry:Kaon interferometry: KKSSKKLL

t2 t1

t=t1-t2

Perfect vertex resolution

cos)1(2;, 2/ tmeeetI ttt LSSL

Test of Quantum Mechanics

KLOE-2 σt ~ 0.9 τs → σt ~0.3τsL = 2.5 fb-1 → L = 25

fb-1

A. Di Domenico, 0904.1976andPL B642 (2006) 315

• Tests of descrete symmetries (CP, CPT, …)

• Tests of quantum mechanics -time-evolution of the entangled pairs of neutral kaons -passive kaonic quantum eraser (unique at KLOE)

•Universality of the weak interaction of leptons and

quarks•Lepton universality Search for possible deviations from SM expectation of (K±e)/(K) to 0.4%

precision

• Investigations of the structure of the scalar mesons• Gamma gamma interaction

• Study of the muon anomalous magnetic moment αµ

and the evolution of the fine structure constant αem

determination of the excitation function for the e+e- → hadrons • Dark Matter : search for narrow di-lepton resonances

Selected examples of investigations planned by the KLOE-2

KLOE-2 Physics Programme arXiv:1003.3868 EPJC (2010) in print

Thank You

KLOE-2 intends to conduct investigations at the frontier of particle and hadron physics

searching for the phenomena beyond the applicability of

Quantum Mechanics and

Standard Model of Particle Physics

Since nothing is more pleasurable than to falsify the theory !!

I thought… the scientific theories were not the digest of observation,but that they were inventions-conjectures boldly put forward for trialto be eliminated if they clashed with observation … David Hume

=

=

Semileptonic decay identify strengeness content therefore

Asymmetry of KS,L e signals a CP violation

3

SS

SSS 102.9)9.6(1.5

)νπΓ(Kν)πΓ(K

)νπΓ(Kν)πΓ(KA

ee

ee

AS AL 0 implies CPT violation

Kaon interferometry and CPT tests

KLOE-2 σt ~ 0.9 τs → σt ~0.3τs

Kaon interferometry and tests of CPT and Lorentz invariance

izotropowość prędkości światła W celu wykrycia ruchu Ziemi względem eteru w 1878 roku Maxwell zaproponował doświadczenie z interferencją światła A . A. Michelson, Am. J. Sci. 22 (1881) 120.

Δt = Δt║- Δt┴= 2γ/c (γ L1 - L2 -L1 + γ L2) k = c Δt / λ

k = 0 dowodzi, że prędkość światła jest niezależna od kierunku

Δt║ = 2γ/c (γ L1 - L2)

Δt┴ = 2γ/c (L1 - γ L2)

V_Ziemi 30 km/s 0.04 prążka dokładność uzyskana wyniosła 0.01

Pseudoscalar multi-plet Vector multi-plet

Scalar multi-plet:(500), (700), f0(980), a0(980) • Is (600) the lightest scalar meson?

• Do , a0(980) and f0(980) belong to the

same qqqq 3P0 nonet?

• If so, why is the mass spectrum inverted?

qqqqqq states (Jaffe, Achasov et al., Maiani et al.)

KKKK molecules (Weinstein-Isgur, Close et al.,

Kalashnikova et al.)

nature of the scalar mesons

nature of the scalar mesons

f0(980), a0(980), (500) through radiative decays in pairs of pseudoscalars

φ , φ , φ K0K0

Parameter

S (MeV) 983.7 984.7± 1.9 mod 982.5 1.6 ± 1.1

gSKK (GeV) 4.74 3.97 ± 0.43mod 2.15 0.06 ± 0.06

gSPP (GeV) 2.22 1.82± 0.19 mod 0.03 ± 0.04

g2SKK / g2

SPP ~4.6 ~4.8 ~0.6

nature of the scalar mesons

Hadronic cross section measurementThe anomalous muon magnetic momenta = (g - 2)/2 = (116592080 ± 60) 10-11 from E821 at BNLtheory : a = a

QED + aweak

+ ahad

ahad from measurements of the hadronic

cross section via dispersion relation

KLOE-2

1%

Hadronic cross section measurementThe anomalous muon magnetic momenta = (g - 2)/2 = (116592080 ± 60) 10-11 from E821 at BNLtheory : a = a

QED + aweak

+ ahad

ahad from measurements of the hadronic

cross section via dispersion relation

KLOE-2

1%

R = (K± e± ) / (K± ± )

First studies have started with present KLOE data set: need to fully exploit calorimeter for e/ separation

Efficiency will improve with the inner tracker insertion A reasonable guess, based on present detector, is that with 25 fb-1 0.4 % precision can be reached

Test of Lepton Universality

Standard Model Prediction: R = (2.477 ±0.001) x 105

Cirgiliano, Rosell PRL 99 (2007) 231801 (ChPT with precision 0.04 %)

KLOE-2

Data precision improved from 6% to 1% by KLOE EPJ C64 (2009) 627

• f+(0)=0.961(8) Leutwyler and Roos

[ZPC25, 91(1984)]

• Vud=0.97377(27) Marciano and Sirlin

[PRL96 032002(2006)]

Unitarity band

Vus×f+(0) = 0.2187(22)

|Vus| from KLOE >

<Vus×f+(0)> KLOE AV. = 0.2157(6) ( 0.28% rel.)

<Vus×f+(0)> WORLD AV. = 0.2166(5) ( 0.23% rel.)

plot: F

.Mescia cou

rtesy

CKM unitarity within ~ 1

Lattice QCD + KLOE-2 => level of ~0.02%

Universality of the weak interaction

Passive quantum eraser; unique at KLOE

-

e-ν

strangeness Kshort

K0 K0 oscillates via KS KL

Passive quantum eraser; unique at KLOE

Passive quantum eraser; unique at KLOE

Dark Matter search• Recent unexpected astrophysical observations (PAMELA, ATIC, INTEGRAL,

DAMA/LIBRA) can be interpreted by assuming the existence of a low mass [O(1 GeV)] dark matter sector that interacts with SM particles through a mixing of a new gauge field, U, with hypercharge

• Possible signatures:– if mU< M e+eUℓ+ℓ resonances in ℓ+ℓ invariant mass

– if there is a Higgs-like particle (h') in the dark sector, with mh'< M

higgs’-strahlung e+eU*Uh', with Uℓ+ℓ

two leptons + missing energy (h' undetected)

– if mh‘<2 mU multilepton events

• If mixing parameter k 10-2 – 10-3 ~ 1 pb

(observable at KLOE-2)

[Essig et al., arXiv:0903.3941]

Ks tagging a unique feature at KLOE

e+e- φ |KS,p>|KL,-p> -|KS,-p>|KL,p>

φ: JCP = 1--

KLOE: τS = 89.56 ± 0.03 ± 0.07 ps ( ~0.1%)

KS 30 SM (KS30) = (KL30) |000|2 BR(KS30) ~ 210-9

450 pb-1; 6 events tag by KL interaction in the EmC

Background: KS 20 + 2 split / accidental clusters in the EmC

Nbkg(MC) = 3.13 ± 0.90

BR(KS30) < 1.2 × 107 @ 90% CL

( BR < 1.4 × 105 @ 90% CL [SND ’99]

BR < 7.4 107 [interference, NA48, ‘04] )

KLOE-2 with 25 fb-1 and inner tracker can reduce the upper limit by factor of about 50; perhaps observe a signal for a first time?

CP violation: direct search

(KS,L -e+) (KS,L +e-)

(KS,L -e+) (KS,L +e-)

_

_AS,L =

Asymmetry of KS,L esignals a CP violation

3-

LS

SL 101.8)3.1(-0.5 1τνπKBR

τνπKBR

4

1Re

e

ex

• Test of S=Q (CPT conserv. ampl.) (BR(KLe) and L from KLOE and S from PDG)

(CPLEAR = 6.110-3)

(SM expect. O(10-7))

AS AL 0 implies CPT violation

KLOE-2 will reduce the uncertainty by a factor of 3.

3

SS

SSS 102.9)9.6(1.5

)νπΓ(Kν)πΓ(K

)νπΓ(Kν)πΓ(KA

ee

ee

Future prospects - KLOE2 - physics: e+e- → e+e- * * → e+e- + X

Lint = 1 fb-1

( → X)= Lint

dNX

dW

dLdW KLOE-2

no simultaneous decays (t=0) in the samefinal state due to thedestructive quantum interference

t/S

I(t

) (a

.u) mfrom

here

cos2;, 2/ tmeeetI ttt LSSL

Kaon interferometry:Kaon interferometry: KKSSKKLL

t2 t1

t=t1-t2

Perfect vertex resolution

φ: JCP = 1-- hence φ |KS,p>|KL,-p> -|KS,-p>|KL,p> cos)1(2;, 2/ tmeeetI ttt LSSL

e+e- φ |KS,p>|KL,-p> -|KS,-p>|KL,p>

φ: JCP = 1--|KS(t)> = e-λst|KS>|KL(t)> = e-λLt|KL>

|KS> ≈ (1+εs)|K0> + (1-εs)|K0>

|KS(t)> = e-λst|KS>|KL(t)> = e-λLt|KL>

|KS> ≈ (1+εs)|K0> + (1-εs)|K0>|KL> ≈ (1+εL)|K0> + (1-εL)|K0>

=

=

Semileptonic decay identify strengeness content therefore

Asymmetry of KS,L e signals a CP violation

3

SS

SSS 102.9)9.6(1.5

)νπΓ(Kν)πΓ(K

)νπΓ(Kν)πΓ(KA

ee

ee

AS AL 0 implies CPT violation

PL B636 (2008) 1730.41 fb-1

Recommended