Partitioned methods for time-dependent thermal fluid-structure … · 2019-01-21 · Partitioned...

Preview:

Citation preview

Partitioned methods for time-dependent thermalfluid-structure interaction

Azahar MongePhilipp Birken

Lund University

DeustoTech, Bilbao, January 17th, 2019

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 1 / 24

Outline

1 A fast solver for thermal FSI

2 Limitations of the Dirichlet-Neumann method

3 A multirate approach

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 2 / 24

Outline

1 A fast solver for thermal FSI

2 Limitations of the Dirichlet-Neumann method

3 A multirate approach

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 3 / 24

Applications of thermal FSI

Figure: Left: Vulcain engine for Ariane 5. Right: Sketch of the cooling system;Pline, Wikimedia Commons

Thermal interaction between fluid and structure needs to be modelled

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 4 / 24

Dirichlet–Neumann coupling

Partitioned approach for the solution of the coupled problem.

Fluid Model : Compressible Navier–Stokes - FVM, DLR-TAU-Code

Structure Model : Nonlinear heat equation - FEM, NATIVE inhousecode

Θk+1Γ = S(F(Θk

Γ)), Interface Temperature Iteration

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 5 / 24

Outline

1 A fast solver for thermal FSI

2 Limitations of the Dirichlet-Neumann method

3 A multirate approach

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 6 / 24

Limitations of the Dirichlet–Neumann method

Convergence rates FSI application

log( "t)10 -8 10 -6 10 -4 10 -2 10 0 10 2

Con

v. R

ate

10 -8

10 -6

10 -4

10 -2

10 0

10 2

CR Plate1D | '|-

/

Limitations

The subsolvers are sequential.

Same time integration for bothfields.

Use a different method!

More at: A. Monge, P. Birken, Computational Mechanics, 2017

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 7 / 24

Limitations of the Dirichlet–Neumann method

List of wishes

Two independent time integration schemes.

High order resolution (at least 2nd order).

To be able to insert time adaptivity in the framework.

Option 1

Exchange fixed point iteration withtime recursion

Option 2

Use a different domaindecomposition method

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 8 / 24

Limitations of the Dirichlet–Neumann method

Option 1

Dirichlet-Neumann WaveformRelaxation (DNWR) algorithm

+ Computationally cheap

– Sequential method

Option 2

Neumann-Neumann WaveformRelaxation (NNWR) algorithm

+ Parallel method

– Computationally expensive

DNWR and NNWR introduced by Gander and Kwok 2016: Constantcoefficients and one single time integration scheme.

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 9 / 24

Outline

1 A fast solver for thermal FSI

2 Limitations of the Dirichlet-Neumann method

3 A multirate approach

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 10 / 24

Model Problem: Coupled heat equations

αm∂um(x, t)

∂t−∇ · (λm∇um(x, t)) = 0,

t ∈ [t0, tf ], x ∈ Ωm ⊂ Rd , m = 1, 2

um(x, t) = 0, x ∈ ∂Ωm\Γu1(x, t) = u2(x, t), x ∈ Γ

λ2∂u2(x, t)

∂n2= −λ1

∂u1(x, t)

∂n1, x ∈ Γ

um(x, 0) = gm(x) x ∈ Ωm

where αm = λm/Dm.

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 11 / 24

Dirichlet-Neumann waveform relaxation (DNWR)

(D)

α1

∂uk+11 (x,t)∂t −∇ · (λ1∇uk+1

1 (x, t)) = 0, x ∈ Ω1,

uk+11 (x, t) = 0, x ∈ ∂Ω1\Γ,

uk+11 (x, t) = gk(x, t), x ∈ Γ,

uk+11 (x, 0) = u0

1(x), x ∈ Ω1.

(N)

α2

∂uk+12 (x,t)∂t −∇ · (λ2∇uk+1

2 (x, t)) = 0, x ∈ Ω2,

uk+12 (x, t) = 0, x ∈ ∂Ω2\Γ,λ2

∂uk+12 (x,t)∂n2

= −λ1∂uk+1

1 (x,t)∂n1

, x ∈ Γ,

uk+11 (x, 0) = u0

1(x), x ∈ Ω1.

(U) gk+1(x, t) = Θuk+12 (x, t) + (1−Θ)gk(x, t), x ∈ Γ.

How to choose the relaxation parameter Θ properly?

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 12 / 24

Neumann-Neumann waveform relaxation (NNWR)

(Dm),m = 1, 2

αm

∂uk+1m (x,t)∂t −∇ · (λm∇uk+1

m (x, t)) = 0, x ∈ Ωm,

uk+1m (x, t) = 0, x ∈ ∂Ωm\Γ,

uk+1m (x, t) = gk(x, t), x ∈ Γ,

uk+1m (x, 0) = u0

1(x), x ∈ Ωm.

(Nm),m = 1, 2

αm

∂ψk+1m (x,t)∂t −∇ · (λm∇ψk+1

m (x, t)) = 0, x ∈ Ωm,

ψk+1m (x, t) = 0, x ∈ ∂Ωm\Γ,λm

∂ψk+1m (x,t)∂n1

= λ1∂uk+1

1 (x,t)∂n1

+ λ2∂uk+1

2 (x,t)∂n2

, x ∈ Γ,

ψk+1m (x, 0) = 0, x ∈ Ωm.

(U) gk+1(x, t) = gk(x, t)−Θ(ψk+11 (x, t) + ψk+1

2 (x, t)), x ∈ Γ.

How to choose the relaxation parameter Θ properly?

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 13 / 24

Choices

Space discretization: 1D and 2D finite elementsTime discretization: Implicit Euler and SDIRK2Matching space grid at the interface, unknowns on interfaceNonmatching time grids at the interface, linear interpolation

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 14 / 24

Multirate 1D solution

Iteration 1

0.5

t02

1x

0

0.8

1

0.6

0.4

0.2

0

uh1(x

,t)

Iteration 3

0.5

t02

1x

00

1

0.8

0.6

0.4

0.2

uh3(x

,t)Iteration 2

0.5

t02

1x

0

0.8

1

0.6

0.4

0.2

0

uh2(x

,t)

Iteration 20

0.5

t02

1x

0

1

0.8

0.6

0.4

0.2

0

uh20

(x,t)

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 15 / 24

Relaxation parameter

Q: How to choose the relaxation parameter Θ?

A: Find Θ s.t. minimizes the spectral radius of Σ w.r.t uΓ(Tf ),

uk+1,TfΓ = Σuk,Tf

Γ +2∑

i=2

(ψk+1,τi + ψk,τi

).

Procedure to find the iteration matrix

1 Isolate u(m),k+1,Tf

I from the Dirichlet solver.

2 Isolate u(2),k+1,Tf

I or ψ(m),k+1,Tf

Γ from the Neumann solver.

3 Use the update step to get Σ w.r.t uΓ(Tf ).

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 16 / 24

Iteration Matrix

After lengthly derivations one gets,

DNWR Algorithm

Σ = I−Θ(I + S(2)−1

S(1)),

NNWR Algorithm

Σ = I−Θ(

2I + S(1)−1S(2) + S(2)−1

S(1)),

with

S(m) = (M(m)ΓΓ + ∆tA

(m)ΓΓ )− (M

(m)ΓI + ∆tA

(m)ΓI )(Mm + ∆tAm)−1(M

(m)IΓ + ∆tA

(m)IΓ )

for m = 1, 2.

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 17 / 24

Iteration Matrix

A closer look at the iteration matrix Σ:

Problem: Matrices Mm + ∆tAm are sparse but (Mm + ∆tAm)−1 aredense.

Solution: Use their eigendecompositions to compute the desiredentries of the Toeplitz matrices: (Mm + ∆tAm)−1 = VΛ−1

m V.

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 18 / 24

Optimal Relaxation Parameter

Space discretization: 1D equidistant FE/FE.

Time integration: nonmultirate Implicit Euler.

DNWR Algorithm

Θopt =

(1 +

S(1)

S(2)

)−1

,

NNWR Algorithm

Θopt =

(2 +

S(1)

S(2)+

S(2)

S(1)

)−1

,

with

S(m) = (6∆x(αm∆x2 + 3λm∆t)− (αm∆x2 − 6λm∆t)2sm).

Θopt gives the optimal parameter for any coupled materials!

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 19 / 24

Comparison DNWR and NNWR

1 2 3 4 5 6 7 8 9 10

10−9

10−8

10−7

10−6

10−5

10−4

tol

number of iterations k

resi

dual

=m

ax|u

k−1

Γ−

uk Γ| DN, MR5/5

NN, MR5/5DN, MR5/2NN, MR5/2

Nonmultirate: NNWR performs half the iterations than DNWR.

Nonmultirate: DNWR uses half the resources than NNWR.

Multirate: DNWR performs better than NNWR.

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 20 / 24

Convergence Rates: Air-Water coupling

DNWR (1D case)

0 0.2 0.4 0.6 0.8 110

−4

10−3

10−2

10−1

100

101

Θ

Con

v. R

ates

Σ(Θ)IE (C−C)IE (C−F)IE (F−C)

NNWR (1D case)

0 0.002 0.004 0.006 0.008 0.01

10−10

10−5

100

ΘC

onv.

Rat

es

Σ(Θ)IE (C−C)IE (C−F)

Θopt is more sensitive for NNWR than for DNWR.

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 21 / 24

Convergence Rates: NNWR in 2D

Air-Steel

0 0.5 1 1.5 2

x 10−3

10−4

10−3

10−2

10−1

100

101

Θ

Con

v. R

ates

Σ(Θ)IE (C−C)IE (C−F)SDIRK2 (C−C)SDIRK2 (C−F)

Air-Water

0 0.2 0.4 0.6 0.8 1

x 10−3

10−4

10−2

100

Θ

Con

v. R

ates

Σ(Θ)IE (C−C)IE (C−F)SDIRK2 (C−C)SDIRK2 (C−F)

The 1D Θopt is very good for 2D examples.

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 22 / 24

Summary and Further Work

Multirate parallel method for coupled parabolic problems (NNWR).

Multirate sequential method for coupled parabolic problems (DNWR).

We have performed a 1D analysis to find Θopt .

Θopt is dependent on ∆t, ∆x , λm and αm, m = 1, 2.

Θopt is more sensitive for NNWR than for DNWR.

Θopt works for 2D, multirate and time adaptivity.

Investigate the time adaptive extension.

Apply to FSI test cases.

Load balancing.

More at: A. Monge, P. Birken, arXiv:1805.04336

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 23 / 24

Thank you!

Azahar Monge (Lund University) Partitioned methods for thermal FSI October 10th, 2018 24 / 24

Recommended