Particle-transport Calculation

Preview:

Citation preview

V-03-Meigo

Particle-transport Calculation

Shin-ichiro Meigomeigo@linac.tokai.jaeri.go.jp

1. Introduction2. NMTC/JAM3. Comparison with experiment4. Summary

Introduction

Neutronics calculation are performed for MLF design with NMTC/JAMsuch as shielding and property of spallation neutron source(intensity, pulse structure, heat deposition and so on)

NMTC/JAERI: Standard calculation for JKJSpallation neutron source, Transmutation (ADS)Beam line (3N BT),Shielding calculation for 50GeV synchrotron

As for shielding, MCNPX is employed as well.

For assurance of prediction capability of the particle transport code.

NMTC/JAM and MCNPX are compared with the experimental data.

NMTC/JAM

NMTC: Nucleon Meson Transport CodeMonte Carlo technique(Intra nuclear cascade + evaporation) +inter transportBertini Cascade model (up to 3.5 GeV)

JAM: Jet AA Microscopic transport model, Phys. Rev. C61,024901(1999)Developed by research group for hadron science at JAERIApplicable energy ~1 TeVAll kind of hadrons can be transported.

NMTC/JAM: Above 3.5 GeV: JAM Below 3.5 GeV: Bertini Not only installed JAM, but also the following modified.

Revised the nucleon-nucleus cross sectionNew evaporation model (GEM: Generalized Evaporation Model)Charged particle transport in magnetic field calculation

Downsizing• PC(Linux)• DEC-Alpha(Unix)• Sun(Solaris)

History of NMTC/JAM

1951 NMTC(ORNL) Intranuclear cascade modelEvaporation model

1983 NMTC/JAERI Implemented high energy fission model1997 NMTC/JAERI97 N-nucleus cross section revised(1)

Level density parameterSimplify of geometry (CG geometry)Importance sampling

2000 NMTC/JAM JAM modelN-nucleus cross section revised (2)Transport in magnetic field

Now available:Automatic parallel calculation GG geometry QMD (Quantum Molecular Dynamics) model

NMTC/JAM code system

NMTC/JAM

OutputSpectrumResidual nuclideHeat depositionDoseDPA

MCNPor

TWODANT,DORT

Contribution forEn<20MeV,γ

Merge Output forall particle

p,π,KEn>20MeV

2 input cards required

NMTC/JAMMCNP

material, geometryDCHAIN-SP

Time (irradiation, cooling)

DCHAIN-SP

Residual activityRadiation Dose

Every physical quantitycan be obtained.

Solaris, DEC, Linux Input Target material

Geometry Particle, tally

En<20MeVγ

4

Proton-Proton Inelastic Cross Section

2 4 6 8 100

20

40

60

Ecm (GeV)

σ(m

b)

NN → N∆(1232)

NN → NN*

NN → N∆*

NN → RR

total

inelastic

String

Resonance

Cross sections for NN collision parameterized.

JAM: Inelastic cross section for NN

0.0 0.5 1.0 1.510−1

100

101

102

103

104

105

106

107

108

109

1010

mt - m0 (GeV / c2)

1/(2

πmt)d

2 σ/dm

tdy

(mb

GeV

-2c4 )

p ( 13.7 GeV ) + Au → p

E802 exp.

y = 2.1 ( ×10+6 )y = 1.7 ( ×10+4 )y = 1.3 ( ×10+2 )y = 0.9

0.0 0.5 1.0 1.510−1

100

101

102

103

104

105

106

107

108

109

1010

1011

mt - m0 (GeV / c2)

1/(2

πmt)d

2 σ/dm

tdy

(mb

GeV

-2c4 )

p ( 13.7 GeV ) + Au → π-

E802 exp.

y = 2.5 ( ×10+6 )y = 1.9 ( ×10+4 )y = 1.3 ( ×10+2 )y = 0.7

JAM: Comparison of particle production cross section (1)

JAM agrees with the experiment for 13.7-GeV proton incidence.

100 101 102 10310−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

En (MeV)

d2 σ/dΩ

dE (

mb/

sr M

eV)

p ( 3.0 GeV ) + Pb → n

Ishibashi et al.

15°

30° ( ×10-2 )60° ( ×10-4 )90° ( ×10-6 )

0 200 400 600 800 1000 120010−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Eπ (MeV)

Ed3 σ/

dp3

(b/s

r/(G

eV/c

)2 c)

p ( 3.17 GeV ) + Pb → π-

En’yo et al.

45.0°

60.0° ( ×10-1 )72.5° ( ×10-2 )84.3° ( ×10-3 )

JAM: Comparison of double differential cross section (DDX)

JAM shows good agreement with experiment for 3-GeV protons.Also Bertini cascade is in good agreement so that Bertini used less than 3.5 GeV.

JAM: Decay of particle

Name kf-code mass (MeV) charge baryon

p 2212 938.3 1 1

n 2112 939.6 0 1π+ 211 139.6 1 0

π0 111 135.0 0 0π- -211 139.6 -1 0µ+ -13 105.7 1 0

µ- 13 105.7 -1 0

K+ 321 493.6 1 0

K0 311 497.7 0 0K- -321 493.6 -1 0νe 12 0.0 0 0νµ 14 0.0 0 0

η 221 547.5 0 0η’ 331 957.8 0 0

Λ0 3122 1115.7 0 1Σ+ 3222 1189.4 1 1

Σ0 3212 1192.5 0 1Σ- 3112 1197.4 -1 1

Ξ0 3322 1314.9 0 1Ξ- 3312 1321.3 -1 1Ω- 3334 1672.4 -1 1

π0 → γ + γ 100%

π+ → µ+ + νµ 100%

π- → µ- + νµ 100%

µ+ → e+ + νe− + νµ 100%

µ- → e- + νe− + νµ 100%

K0 → π+ + p 68.61%

→ π0 + π0 31.39%→ γ + γ other

K+ → µ+ + νµ 63.51%

→ π+ + π- otherK- → µ- + νµ 63.51%

→ π+ + π- otherη → γ + γ 38.9%

→ π0 + π0 + π0 31.9%

→ π+ + π- + π0 23.7%→ π+ + π- + γ other

η’ → π+ + π- + η 44.1%

→ π0 + π0 + η 20.5%

→ π+ + π- + γ 30.1%

→ γ + γ other

Λ0 → p + π- 64.1%

→ n + π0 other

Σ+ → p + π0 51.57%

→ n + π+ otherΣ0 → Λ0 + γ 100%

Σ- → n + π- 100%

Ξ0 → Λ0 + π0 100%Ξ- → Λ0 + π- 100%

Ω+ → Λ0 + K- 67.8%→ Ξ0 + π- 23.6%

→ Ξ- + π0 other

All decay mode of hadrons is taken into account.↓

Transport caluculation of all hadrons available.

102 103 1040

2000

4000

6000

Energy (MeV)

Cro

ss S

ectio

n (m

b)

208Pb (n,tot) and (n,ela)

Pearlstein

LA150

Present

EXP

100 101 102 103 1040

1000

2000

3000

Energy (MeV)

208Pb (p,non)

Bert + JAM

Pearlstein

LA150

Present

EXP

JAM: Nucleon nucleus cross section

Niita’s systematics

Good agreement with experiment

JAM: Angular distribution for elastic

Also systematics by Niita is used.

0 10 20 30 4010−4

10−3

10−2

10−1

100

101

102

103

104

105

106

CM-angle (degree)

Cro

ss S

ectio

n (m

b/sr

)

Present

LA150Exp.

208Pb (n,n) 150 MeV

12C (p,p) 1 GeV

× 0.1

0 5 10 15 2010−3

10−2

10−1

100

101

102

103

104

105

106

CM-angle (degree)

Present

Exp.

208Pb (p,p) 1 GeV

208Pb (p,p) 500 MeV

× 0.01

Good agreement with experiment

NMTC/JAM:Charged particle transport in magnetic field

Compared with DECAY-TURTLE(Beam tracking)

Phase space distribution at C-target. Phase space distribution at Hg-target.

NMTC/JAM DECAY-TURTLE NMTC/JAM DECAY-TURTLE

Hor

izon

tal

Ver

tical

NMTC/JAM gives good agreement with DECAY-TURTLE.

NMTC/JAMNew evaporation model: GEM

Good agreement with the experiment. Especially for 7Be production cross section

Spectrum of neutron produced from thick target by 0.5, 1.5 GeV pMeigo et al., Nucl. Instr. and Meth A431 (1999) 521

S01

Pilot US02

4 m P01

P02

P1

P2 Target15x15x20 cm3

Beam Dump

90º

NE102A17 x 17 x t1 cm

2.0 m.

15º

30º

60º

NE213φ 12.7x t 12.7cm

120º

150º

1.5 m. m

NE102A

C1v

KEK PS π2 beam line

Neutron spectra from Pb, W targets

NMTC/JAM Free N-N cross section (black) → Generally good agreementunderestimate in 20~80 MeV

In-medium N-N cross section(red) → Good agreementMCNPX: → Good agreement

10-1 100 101 102 10310-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Ep 1.5 GeV -> W NMTC/JAM Free NNCS NMTC/JAM Inmedium NNCS MCNPX+LA150

Neutron Energy (MeV)

15゜ (x1)

30゜ (x0.1)

60゜ (x10-2)

90゜ (x10-3)

120゜ (x10-4)

150゜ (x10-5)N

eutro

n Fl

ux (/

Leth

argy

/sr/p

roto

n)10-1 100 101 102 103

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Ep 1.5 GeV -> Pb NMTC/JAM Inmedium NNCS NMTC/JAM Free NNCS MCNPX+LA150

Neutron Energy (MeV)

15゜ (x1)

30゜ (x0.1)

60゜ (x10-2)

90゜ (x10-3)

120゜ (x10-4)

150゜ (x10-5)

Neu

tron

Flux

(/Le

thar

gy/s

r/pro

ton)

Pb 15x15x20cm W 15x15x20cm

Neutron spectrum from Fe target

101 102 10310-4

10-3

10-2

10-1

100

101

102

Neutron Energy(MeV)

Neu

tron

Flux

(n/le

thar

gy/s

r/pro

ton)

Ep 1.5 GeV, Fe target

NMTC/JAM In-medium NNCS NMTC/JAM Free NNCS NMTC/JAM Free +LA150

15°x100

30°x10

60°

90°x0.1

NMTC/JAM is adopted to estimate production of neutrons at beam line(3-N BT) and 3-GeV RCS in the present project.

Fe(15x15x20cm)irradiated by 1.5GeV protons

In-medium NNCS(red)→Remarkable good agreement

Neutron Yield

12-GeV protonon lead target.Mn-bath tech.

20 40 60

100

200

0Target length(cm)

Neu

tron

Yiel

d(n/

p)

Experiment. D10cm D20cm

NMTC/JAM D10cm D20cm

Good agreement

(p,xn) cross section at 0-deg

100 101 102 10310-3

10-2

10-1

100

101

102

103

Al(p,xn) 0-deg, Ep=1200MeV Experiment NMTC/JAM Default NMTC/JAM ISOBAR isometric ALL JAM MCNPX Default

Neutron energy (MeV)

Cro

ss s

ectio

n(m

b/sr

/MeV

)

Important property for the design of beam line around C target

By using appropriatemodel for NMTC/JAM,a good agreement is obtained.

Up to now, MCNPXoverestimates significantly by a factor of 100.

Activation experiment atAGS Spallation Taget Experiment (ASTE)

10-2

10-1

100

101

0 20 40 60 80 100

115In(n,n')115mIn

Rea

ctio

n R

ate

(1/ta

rget

nuc

leus

/pro

ton)

Distance from top of target (cm)

Hg

Foilp

1.6 GeV

12 GeV

24 GeV

, , :Experiment :LCS-2.7 :NMTC-JAM + MCNP4A

x10-27

Foil

Eth=0.3 MeV

-20 0 20 40 60 80 100 12010-30

10-29

10-28

10-27

10-26

Distance from top of target (cm)

Rea

ctio

n R

ate(

/targ

et n

ucle

us/p

roto

n) NMTC/JAM LCS 2.7 Experiment

209Bi(n,4n)206Bi,

Eth= 23 MeV24 GeV

12 GeV x0.1

Activity distribution of foils placed around the targetMercury target: φ20 cm × 130 cm

NMTC/JAM is in good agreement with experiment.

Shielding ExperimentASTE

Target

Concrete

Steel

Steel

5.0m

3.3m

Proton

3.7m

2.0m

Hg-target irradiated by 3~24-GeV proton

Code Calculation Results - Steel -

10-35

10-34

10-33

10-32

10-31

10-30

10-29

0 50 100 150 200 250

Exp.NMTC/JAM (free)NMTC/JAM (In-medium)MCNPX

Rea

ctio

n R

ate

/ Pro

ton

/ Tar

get N

ucle

us

Shield Thickness [cm]

2.83 GeVIRON

Lateral

209Bi(n,6n)204Bi

10-35

10-34

10-33

10-32

10-31

10-30

10-29

0 50 100 150 200 250

Exp.NMTC/JAM (free)NMTC/JAM (In-medium)MCNPX

Rea

ctio

n R

ate

/ Pro

ton

/ Tar

get N

ucle

us

Shield Thickness [cm]

24 GeVIRON

Lateral

209Bi(n,6n)204Bi

• NMTC/JAM (free)– Underestimation at the beginning, adequate for deep penetration

• NMTC/JAM (in-medium)– Adequate for overall

• MCNPX– Underestimation at the beginning, slightly underestimation for deep penetration

Code Calculation Results - Concrete -

10-35

10-34

10-33

10-32

10-31

10-30

10-29

0 50 100 150 200 250 300 350 400

Exp.NMTC/JAM (free)NMTC/JAM (In-medium)MCNPX

Rea

ctio

n R

ate

/ Pro

ton

/ Tar

get N

ucle

us

Shield Thickness [cm]

3 GeVConcrete

Lateral

209Bi(n,6n)204Bi

10-34

10-33

10-32

10-31

10-30

10-29

10-28

0 50 100 150 200 250 300 350 400

Exp.NMTC/JAM (free)NMTC/JAM (In-medium)MCNPX

Rea

ctio

n R

ate

/ Pro

ton

/ Tar

get N

ucle

usShield Thickness [cm]

24 GeVConcrete

Lateral

209Bi(n,6n)204Bi

• NMTC/JAM (free)– Underestimation at the beginning, slightly overestimation for deep penetration

• NMTC/JAM (in-medium)– Overestimation for deep penetration

• MCNPX– Underestimation at the beginning, adequate for deep penetration

Comparison of Code/Experiment

0.0

0.5

1.0

1.5

2.0

0 50 100 150 200 250

(n,4n)(n,5n)(n,6n)(n,7n)

Cal

c. /

Expt

.

Shield Thickness [cm]

Iron - Lateral2.83 GeVMCNPX

0.0

0.5

1.0

1.5

2.0

0 50 100 150 200 250

(n,4n)(n,5n)(n,6n)(n,7n)

Cal

c. /

Expt

.

Shield Thickness [cm]

Iron - Lateral2.83 GeVNMTC/JAM(in-medium) NMTC/JAM

Fe: very well <±20 %Concrete overestimate factor 3

MCNPXFe: underestimate factor 2Concrete underestimate factor 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 100 200 300 400

(n,4n)(n,5n)(n,6n)(n,7n)

Cal

c. /

Expt

.

Shield Thickness [cm]

Concrete2.83 GeVNMTC/JAM(in-medium)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 100 200 300 400

(n,4n)(n,5n)(n,6n)(n,7n)

Cal

c. /

Expt

.

Shield Thickness [cm]

Concrete2.83 GeVMCNPX

Summary

NMTC/JAM and MCNPX can predict within a factor of 2 for shielding.

NMTC/JAM and MCNPX can predict with good accuracy for the performance of neutron source property.

Recommended