Occupational Beryllium Exposure in Primary Aluminium Production

Preview:

Citation preview

OCCUPATIONAL BERYLLIUM EXPOSURE IN PRIMARY ALUMINIUM PRODUCTION

Y. Thomassen1, D.G. Ellingsen1, K. Dahl1, I. Martinsen2, N.P. Skaugset1 and P.A. Drabløs3

1National Institute of Occupational Health, OSLO, Norway.2Amersham Health, Oslo, Norway3Norsk Hydro, Karmøy Plant, Håvik, Norway

E-mail:Yngvar.Thomassen@stami.no

AL industryIncreased risk of asthma have been

shown to be associated with

exposures in potrooms.

Site of deposition in the respiratory tract

and hence size, may be important.

Potroom asthma:Hypothesis

! Potroom asthma is caused by contaminants penetrating below the larynx.

! Mixed fluoride phases(vapour-particles, PIP’s ?)

! HF and SO2 are transported to the alveolar region adsorbedto particles.

Chemistry:HF, F-

sSO2

PAHs”Total” dust

Temporalexposure

Health related aerosol fractions:

particle size distribution

Spatialexposure:stationary,personal

Morphology:Al2O3

Na3AlF6Cryolite fibers

”New”pollutants ?

”New”pollutants ?

Be COF2SOF4

Be in Alumina:0.01 – 4 ppm

Bath temperature: 960 0CSublimation temperature of BeF2: 800 0C

A recent study found that 9% of workers exposed to Be in a machiningplant were sensitised after lifetime weighted average exposures between 24 - 600 ng Be/m3.

A possible ACGIH new TLV recommendation : 20 ng inhalable Be/m3

PC. Kelleher et al.: J Occup Environ Med, 43:231-237 (2001)

Health Related Aerosol Fractions

Hund/TSI - Respicon

Participating plants

Sampling at:! Lista ! January 2003! Mosjøen ! February 2003!SØRAL ! March 2003!Karmøy ! March/April 2003!Årdal ! September 2003!Høyanger ! November 2003 !Lista ! March 2004

ParticipatingAl-smelters

Sampling equipment

Photo: D. Kroslid, EA Lista

Respicon

SO2 sensor

IOM Split 2direct readingspectrometer

Gas filter

3 Pumps

Variability of exposure

Anode worker - Prebake Cell operator - Søderberg

Direct reading Respicon

Screw cap

Sample chamberhousing

Centrifuge tube

10 ml reagent

Air filter

0.2 µm PVDF membrane

Centrifuge Tube with Filter Cup Insert

Inductively coupled plasma optical emission spectrometry

(ICP-OES)

Detection limits in ng/m3

(sample volum:1 m3)3x SD of blank filters (n=89)

0.6240.51.96.41.6

Be ax 313.107

Be ax313.042

Be ax 234.861

Be 313.107

Be 313.042

Be 234.861

ax : axial reading

Beryllium exposure in ng/m3: Respicon: All plants

<0,5 - 2084,010,2Respirable

0,7 - 2556,818,1Thoracic

1,3 - 33719,642,1 Inhalable

Min - MaxGM(n=274)

Mean(n=274)

1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0

1=Plant1 Prebake,2=Plant 2 Prebake,3=Plant 3, 4=Plant 4,5=Plant 5 1,6=Plant 5 2,7=Plant 6 Søderberg,8=Plant 6 Prebake, 9=Plant 1 Søderberg, 10=Plant 2 Søderberg

0,00

50,00

100,00

150,00

200,00

250,00

300,00

Beinh

ng/m

3

65

126187

46

125170

165

155

200

17

104

1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0

Prebake, 9=Plant 1 Søderberg, 10=Plant 2 Søderberg

0,00

50,00

100,00

150,00

200,00

250,00

300,00

Bet

h in

ng/

m3

4

125 165

35

62

65

170

155

200

46

17 104

1=Plant1 Prebake,2=Plant 2 Prebake,3=Plant 3, 4=Plant 4,5=Plant 5 1,6=Plant 5 2,7=Plant 6 Søderberg,8=Plant 6

1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0

1=Plant 1 Prebake,2=Plant 2 Prebake,3=Plant 3,4=Plant 4,5=Plant 5 1,6=Plant 5 2,7=Plant 6 Søderberg,8=Plant 6

Prebake, 9=Plant 1 Søderberg, 10=Plant 2 Søderberg

0,00

50,00

100,00

150,00

200,00

250,00

Bea

lv in

ng/

m3

61

139

35

4

62

170

155104

Water Soluble Inhalable Be and Al Plant 1 - Prebake

y = 0,90x + 36,6R2 = 0,8331

0,0

50,0

100,0

150,0

200,0

250,0

300,0

0,0 50,0 100,0 150,0 200,0 250,0 300,0

Be ng/m3

Al u

g/m

3

Water Soluble Thoracic Be and Al Plant 1 - Prebake

y = 1,01x + 22R2 = 0,8846

0,020,040,060,080,0

100,0120,0140,0160,0180,0

0,0 50,0 100,0 150,0 200,0

Be ng/m3

Al u

g/m

3

Water Soluble Respirable Be and AlPlant 1 Prebake

y = 0,83x + 13,6R2 = 0,8818

0,0

20,0

40,0

60,0

80,0

100,0

120,0

0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0

Be ng/m3

Al u

g/m

3

Water Soluble Respirable Be and Al Plant 2 Prebake

y = 1,25x + 3,9R2 = 0,8659

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

0,0 5,0 10,0 15,0 20,0 25,0 30,0Be ng/m3

Al u

g/m

3

Water Soluble Respirable Be and Al Plant 5 Søderberg

y = 5,38 + 0,17R2 = 0,8616

0,0

10,0

20,0

30,0

40,0

50,0

60,0

0,0 2,0 4,0 6,0 8,0 10,0Be ng/m3

Al u

g/m

3

Water soluble Be in % of total

0 20 40 60 80 100 120

1

6

11

16

21

26

Mean: 81 % (n=28)

Characterization of individual aerosol particles in workroom air of aluminium smelter potroomsBurkard L.W. Höflich1, Stephan Weinbruch2*, Ralf Theissmann1, Hauke Gorzawski2, Martin Ebert2, Hugo M. Ortner1, Asbjørn Skogstad3, Dag G. Ellingsen3, Per A. Drabløs4, and Yngvar Thomassen3,5

1Institute of Materials Science, Technical University of Darmstadt, Petersenstr. 23, D-64287 Darmstadt, Germany2Institute of Applied Geosciences, Technical University of Darmstadt, Schnittspahnstr. 9, D-64287 Darmstadt, Germany3National Institute of Occupational Health, P.O. Box 8149 DEP, N-0033 Oslo, Norway4Karmøy Plant-Norsk Hydro, N-4265 Håvik, Norway5Department of Plant and Environmental Sciences, Agricultural University of Norway, N-1432 Ås, Norway

Submitted to: Journal of Environmental MonitoringDecember 2004

Theoretical aspects of fluoride air contaminantformation in aluminium smelter potrooms

Boris V. L’Vova, Leonid K. Polzika, Stephan Weinbruchb, Dag G. Ellingsenc

and Yngvar Thomassenc,d

aDepartment of Analytical Chemistry, St. Petersburg State Polytechnic University, Politekhnicheskaya ul. 29, 195251 St. Petersburg, Russia bInstitute of Applied Geosciences, Technical University of Darmstadt, Schnittspahnstr. 9, D-64287 Darmstadt, GermanycNational Institute of Occupational Health, P.O. Box 8149 DEP, N-0033 Oslo, Norway dDepartment of Plant and Environmental Sciences, Agricultural University of Norway,N-1432 Ås, Norway.

Submitted to : Journal of Environmental Monitoring January 2005

Ultrafine particles at workplaces of a primary aluminium smelter

Yngvar Thomassen1,2, Wolfgang Koch3, Wilhelm Dunkhurst3, Dag Ellingsen1, Nils-Petter Skaugset1, Lars Jordbekken1 and Per Arne Drabløs4

1 National Institute of Occupational Health, P.O. Box 8149 DEP, N-0033 Oslo, Norway2 Department of Plant and Environmental Sciences, Agricultural University of Norway, N-1432 Ås, Norway

3 Fraunhofer Institute of Toxicology and Experimental Medicine, Nikolai- Fuchs-Str. 1,D-30625 Hannover, Germany

4 Karmøy Plant Norsk Hydro, N- 4265 Håvik, Norway

To be submitted to : Journal of Environmental Monitoring

0 1 2 3 4 50

100

200

300

num

ber o

f par

ticle

s

µm

For particles below 100 nm only electrostatic sampling procedures can be applied and their size classification is performed by scanning mobility particle sizing.

Histogram of the measured particle sizes with diameters ≤ 5 µm from all of the particles investigated from the Prebake hall

3-d plot of the mobility size distribution during anode change operations

Formation route of ultrafine particles

960 °C

Al

Anode

CryoliteNa3AlF6 Decomposition, evaporation

Reaction, nucleation, condensation

Fluorides of Al and Na (Be)Na5Al3F14

AluminaAl2O3

Cathode

Conclusions:" Be is present in workroom aerosols in

potrooms of Al-primary smelters

" Ultrafines contain Be

" Be is mostly water soluble

" Water soluble fluorides are present in high excess

" High variability in exposure is experienced

Acknowledgements:

Financial support is gratefully acknowledged from:

Confederation of Norwegian Businessand Industry (NHO)

AMS

Norsk Hydro

Recommended