Observed Properties of Planetary...

Preview:

Citation preview

Geoff Marcy & Paul Butler Debra Fischer, Steve Vogt

Greg Laughlin, Eric Ford, Andrew Cumming, Greg Henry, Jack Lissauer Jason Wright, Brad Carter,

Chris McCarthy, John Johnson

10 Mar 200510 Mar 2005

Disks to PlanetsDisks to Planets

Observed Properties ofPlanetary Systems

Theory meets ObservationTheory meets Observation

Observed Properties ofObserved Properties ofPlanetary SystemsPlanetary Systems

Update:Update: Planet Mass Distrib. Orbits: a, e Distrib. Metallicities of Host Stars

- Stellar Sample -

1330 Nearby FGKM Stars

(~2000 stars total with Mayor et al. )

Star Selection Criteria:Star Selection Criteria:

•Vmag < 10 mag• No Close Binaries• Age > 2 Gyr

Hipparcos Cat. d < 100 pc

Lum

1.3Msun

0.3 MSUN

.. 1330 Target Stars 1330 Target StarsH-R DiagramH-R Diagram

Typical Doppler Data

Errors: 2-3 m/s

Const. Vel.:80% of All Stars

No gas-giantNo gas-giantwithin 5 AU.within 5 AU.

KeckKeck

Significance ofSignificance of NondetectionsNondetections::

Past 2 Years:New Planet Domains

• a > 2 AU• 1 M NEP < Msini < 1 M SAT

Planet Discovery Space: Mass vs a

MASS(MJup) 1

0.1

10

1 1 MMearth earth @ 1 AU for d= 1 pc @ 1 AU for d= 1 pc ==> 3==> 3 microarcsec microarcsec

0.1 1.0 10 a (AU)

Sub-Saturn Masses:Sub-Saturn Masses: 30 - 100 30 - 100 MMEarthEarth

BeyondBeyond1 AU1 AU

Gliese 436:Velocity vs. Phase

MsinMsinii = 21 M= 21 MEarthEarth

Tidal LockTidal Lock P = 2.64 dP = 2.64 d

Composition ?Composition ? rock + icerock + ice rock + Ferock + Fe gaseous gaseous

L = 1/50 LL = 1/50 LOOAtmosphere?Atmosphere? TTfrontfront = 650 K= 650 K

..

Poor

Detect-

ability

Flat Extrapolation:Flat Extrapolation: +6% of stars have+6% of stars have giant planetsgiant planets 3 - 20 AU .3 - 20 AU . Total: 12 %*Total: 12 %*RiseRise

*But planetoccurrence is astrong functionof stellarmetallicity

Future: Gas Giants Beyond 5 AUG5 VG5 V

Represents 3 %Represents 3 % of Starsof Stars

Orbits:Orbits: Circular orCircular or Eccentric?Eccentric?

G0 VG0 V

P (d) ecc omega K(m/s) 4.617 0.01 69.2 69.6 241.342 0.25 249.2 55.21292.4 0.26 282.3 63.3

At Lick, wecontinue to observeall stars withdetected planets toimprove orbitalparameters and tosearch for additionalplanets.

Upsilon Upsilon AndromedaeAndromedae

Orbital Eccentricities

TidalTidalCirc.Circ.

JupitersJupitersat 2-4 AU:at 2-4 AU: StillStillEccentricEccentric..

a = 4.5 AU

Planets Orbiting Beyond Planets Orbiting Beyond 2 AU2 AU

a = 2.6 AU

a = 3.78 AUa = 3.78 AU

EccentricityEccentricity > 0.1 +/- 0.1 > 0.1 +/- 0.1

70 VirLone, Eccentric Orbit

• 16 yrs• No TrendNo 2nd

planet

70 70 Vir Vir ((unphasedunphased))

ResidualsResiduals

Origin of Eccentricities

Two Options:

1. Planet - Disk Pumping of ecc. - Get e = 0.5 ?

2. Resonance - Pumping, followed by ejection. - Ejection common ?

- however, a continuum of planetary companions in eccentric systems is not currently observed.

(Kley, Dirksen, Lee & Peale, Lin & Bryden, E.Chiang)

Spectral SynthesisModeling

1) Solar spectrum setsgf values,broadeningcoefficients.

2) LTE radiativetransfer withKurucz modelatmospheres.

3) Least-Squares fit tospectral lines.

ChemicalChemicalAbundancesAbundancesOf StarsOf StarsWith Jeff With Jeff ValentiValenti

P(planet) = 0.03 x

2.0

(NFe/NH)SUN

(NFe/NH)

Planet – Metallicity CorrelationAbundanceAnalysis of1040 stars onplanet search

Previous evidence:Gonzalez; Santos

Stars with known exoplanets (highest metallicitydistribution) have a metallicity distribution that is about0.1 dex more metal-rich than other stars (solid line) onthe Lick, Keck and AAT programs.

These conclusions apply toFGK stars with exoplanets inorbital periods shorter than 4years and K > 30 m/s.

•Subgiants without planetshave same metallicitydistribution as MS starswithout planets!

•Subgiants with planets havesame metallicity distributionas MS stars with planets!

No metallicity gradientacross the subgiant branch

(Multi-planet systemsconnected with lines)

No corrrelation betweenmetallicity and orbitaleccentricity or orbital period.

Stars with planets are metal-rich, even when planets arein wide orbits!

Exploiting the Planet-Metallicity Correlation

Hot Jupiter Search: “N2K”

International ConsortiumD. Fischer, G. Laughlin, R.P. Butler, G. Marcy (Keck)S. Ida, B. Sato (Japan: Subaru)D. Minniti (Chile: Magellan)G. Henry (Photometric Follow-up)M. Lopez-Morales, E. Ford, J. Valenti, C. McCarthyM. Ammons, S. Robinson, J. Johnson, R. Sareen

Hot JupitersBoundary conditions for theories of orbital migration, planet-planetand planet-disk interactions, parking mechanisms and disk evolution

High probability transit candidates (e.g., HD 209458) - direct observations: atmosphere, reflected light, polarimetry - transit surveys miss 90% of close-in (non-transiting) planets

Serve as tracers of multiple planet systems with orbital periods shortenough to exhibit observable non-Keplerian interactions

Statistical anomalies: 3d periods, lower planet mass, higher stellarmass

Strategy:Strategy:

• Start with database of 14,000 stars

V< 10.5, d < 110 pc, FGK

• Cull out high [Fe/H] candidates

• “Quick-look” 3-4 observations to check RV’s

RMS > 18 m/s: warrants follow-up

RMS < 18 m/s: drop

High VelocityRMS reveals planetcandidates afterjust 3 observations!

About 40 new candidates!

• The discoveries emerging from RV surveys continue tobreak new scientific ground:

lower mass planetslonger orbital periods

• These discoveries provide the foundation for further studiesthat characterize extrasolar planets

Spitzer observationsExtreme Adaptive Opticstransmission spectra of planet atmospheresreflected light, polarimetrySpace missions (SIM, TPF)

The field is making the transition from “stampcollecting” to planet characterization.

Recommended