Novel Formulation and Biopharmaceutical Challenges of Oral ... · Cancer Research • Massive...

Preview:

Citation preview

Novel Formulation and Biopharmaceutical Challenges of Oral Cancer Therapy

Gavin HalbertCancer Research UK Formulation Unit

Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde

Synopsis

• Introduction• Oral administration• Cancer and chemotherapy developments• Barriers requiring carriers• Pharmaceutical nanolandscape• Amorphous, anthracyclines and taxanes• Nanotechnology issues• Conclusions

Gavin Halbert• Pharmacist, Chemist & Qualified Person• Drugs into patients• Range of research, formulation and product experience• Drug delivery sympathies – practical realities

FormulationUnit

CMAC OrBiTo

MMIC

Introduction

Formulation Unit• Established in 1983 – unique within UK• Develop novel anti-cancer drugs selected by Cancer Research UK• Antibodies – Alkylating Agents – Antisense• Drug Delivery Systems

LiposomesADEPT

Introduction

Drug Delivery in Cancer

Chemotherapy

• Long history of delivery/targeting drugs to cancer

1958 – methotrexate conjugated to polyclonal antibody

• Early rationale

Alleviation of toxicity

• Multiple systems tested

Liposomes

Microspheres

Nanoparticles

Polymeric conjugates

Chen, Y., et.al., J.Cont.Rel., 1988;8;93-101

Microscopy Transferrin/Albumin/Polyaspartic acid microspheres

Introduction

Oral Nanoparticulate Systems

• Uptake of nanoparticles after gastro-intestinal administration

Jani, P., et.al., J.Pharm.Pharmacol., 1990;42;821-826Jani, P., et.al., J.Pharm.Pharmacol., 1989;41;809-812

Introduction

Dawson, G.F., Halbert, G.W., Pharm.Res., 2000;17;1420-1425

Cancer and chemotherapy developments

Cancer Research

• Massive increase in biological understanding• Imatinib – 2001 – targeted treatment

• Tumour heterogeneity

• Agile combination therapy• Personalised therapy

Cancer and chemotherapy developments

Burrell, R., et.al., (2013) Nature 501: 338-345

Molecular Complexity

BCS Issues

sorafenib

nilotinib

imatinib Solubility 200mg/ml

Oral Bioavailability 98%

Solubility sparingly

Oral Bioavailability 31%

Solubility (1:2 DMSO:PBS) 0.3mg/ml

Oral Bioavailability 50%

Cancer and chemotherapy developments

Intestinal Solubility Variation• Impact of simulated gastrointestinal fluid composition

Khadra, I., et.al., (2015) Eur. J. Pharm. Sci., 67: 65-75 (Fasted data only)

CRUK1

2/05

CRUK0

7/13

felodip

ine

fenofib

rate

probu

col

aprep

itant

tadala

fil

zafirlu

kast

carved

ilol

AZD-424

CCTxx736

0.00001

0.0001

0.001

0.01

0.1

1

10

100

Solu

bility

(mM

)

Cancer and chemotherapy developments

Oral administration

Cancer Chemotherapy TherapyRoutes of Administration

• Oral therapy – always presentChlorambucil, tamoxifenTraditional formulation presentations

Not always optimal• Parenteral therapy – main route

Alkylating agents, doxorubicinBioavailabilityAcute therapy

Toxicity, pharmacokinetics

Oral administration

Oral Therapy - Temozolomide

• DacarbazineIV administration

• TemozolomideOral administration

Dacarbazine

Temozolomide

N N

NN

NNH2

O

O

Oral administration

Pro-drug approach

Advantages and switch to oral

Pare

nter

al/O

ral R

atio

0

2

4

6

1995 2010

Formulation Unit Survey

“Biotechs” not included

“the most frequently reported attributes contributing to preference included convenience, ability to receive treatment at home, treatment schedule, and side effects.”

Oral administration

EeK, D., et.al., Patient Preference and Adherence 2016;10;1609-1621

Shih, Y-C.T., et.al., J.Clin.Oncol., 2015;33;2190-2196

Bioavailability

• Poor bioavailability - always an issue• Chemical stability• Poor solubility• Efflux pumps

Paclitaxel

Methotrexate

Doxorubicin

Oral administration

Barriers requiring carriers

Gastrointestinal transit route

DosageForm

Intestinal Fluid

PortalCirculation

SystemicCirculation Tumour

Un-dissolvedDegraded

Un-absorbed

IntestinalMembrane

Liver

MetabolisedExcreted

Kidney Liver

TumourVasculatureNormal

Organs

Toxicity

Drug in solution

Barriers requiring carriers

ReviewsBlanco, E., et.al., Nat.Biotechnol., 2015;33;941-951Malhaire, H., et.al., Adv.Drug.Deliv.Rev., 2016;106;320-336

Gastrointestinal transit route

DosageForm

Intestinal Fluid

PortalCirculation

SystemicCirculation Tumour

Un-dissolvedDegraded

Un-absorbed

IntestinalMembrane

Liver

MetabolisedExcreted

Kidney Liver

TumourVasculatureNormal

Organs

Toxicity

Drug in solution

SolubilityDissolution

Stability

Pumps

Metabolism Excretion

Toxicity

Barriers requiring carriers

How far do you need to go?

DosageForm

Intestinal Fluid

PortalCirculation

SystemicCirculation Tumour

IntestinalMembrane

Liver

TumourVasculatureNormal

Organs

Drug in solution

Passive

Active

Stability

Absorbtion

Drug

Solubilisation

Metabolism

Excretion

Toxicity

Targeting

Use an excipient (carrier) to usurp or circumvent the barrier

Barriers requiring carriers

Pharmaceutical nano-landscape

Pharmaceutical nano-landscapeNano Systems

Molecular Amphiphile Polymer-isable

Intrinsic Particulate

Nanocrystal

Vesicular EmulsionMicelle

Solid Capsular Liposome Niosome Simple Multiple Particulate Capsular

Talelli, M., et.al., Nano Today 2015;10;93-117

Nanocrystals

Micelles

Pharmaceutical nano-landscape

Amorphous systems

• Are they nanobased?

Drug dispersed in polymer – nano sized domains

Molecular dispersion or solution

• Route to increased kinetic solubility

• Systems variability possible

Nano-crystalline to amorphous

Polymer characteristics

• Extreme particle size reduction

Down to the molecule

NB also applicable for other systems

Martinez-Marcos, L., et.al., Int.J.Pharm., 2016;499;175-185

Albendazole polymer –

amorphous dispersion

Pharmaceutical nano-landscape

Review

Jermain, S.V., et.al., Int.J.Pharm., 2018;535;379-392

Development of polymeric systemsHydrophilicHydrophobic

Polymer BPolymer A

Drug

Polymer BPolymer A

DrugDrugDrug

Polymer BPolymer A

DrugDrugDrug

Polymer BPolymer A

DrugDrugDrug

Direct chemical attachment

Triggered release mechanism

Additional Modifier

HydrophilicHydrophobicDrug

Additional moleculesPendant spacer

Physical mix

Polymer BPolymer A

DrugDrugDrug

Targeting Ligand

ReviewsPerez-Herrero, E., et.al., Eur.J.PharmSci., 2015;93;52-79Biswas, S et.al., Eur.J.PharmSci., 2016;83;184-202 Pharmaceutical nanolandscape

Amorphous, anthracyclines and taxanes

Amorphous systems• Increased interest

Poorly soluble drugs• Range of manufacturing techniques

Hot melt extrusion, solvent precipitation

• Example marketed systemsVemurafenibRegorafenibEvorlimus

• Solubility assistance only

Native drug

Martinez-Marcos, L., et.al., Int.J.Pharm., 2016;499;175-185

Solid dispersion

Dissolution of Albendazole

Amorphous, anthracyclines and taxanes

PAMAM-Doxorubicin dendrimer

Amorphous, anthracyclines and taxanes

Data from: Ke, W., et.al., J.Pharm.Sci., 2008;97;2208-2216

• Oral administration 20mg/kg in rat• Particle size ≈ 4nm• Doxorubicin

Cmax (µM) = 0.20AUC (µg/mL)*h = 0.78

• Doxorubicin-PAMAMCmax (µM) = 7.63AUC (µg/mL)*h = 247

• Doxorubicin IV Cmax (µM) ≈ 10

Data from: Rahman, A., et.al., Cancer.Res., 1986;46;2295-2299

Relative not Absolute!

Surface decorated nanoparticles

• PLGA Nanoparticles• Surface –polyethylene glycol or mannosamine• Epirubicin @ 10mg/kg in rats• Particle Size ≈ 250nm

Data from: Tariq, M., et.al., Int.J.Pharm., 2016;501;18-31

Amorphous, anthracyclines and taxanes

Docetaxel microemulsion

• o/w microemulsion oral in ratsCapryol 90/cremophor/transcutol

• Droplet size ≈ 30nm

Yin, Y-M., et.al., J.Cont.Rel., 2009;140;86-94

iv 8mg/kg

po 10 mg/kg

Amorphous, anthracyclines and taxanes

Paclitaxel nanomicelle

• Dual functional system – in ratsMucosal penetration & P-gp inhibition

• Particle size ≈ 250nm

Lian, H., et.al., Colloids and Surfaces B: Biointerfaces, 2017;155;429-439

po 15 mg/kg

Amorphous, anthracyclines and taxanes

Nanotechnology issues

Nanotechnology issues• Complex systems• Production

Solvent, dialysis, sonication, centrifugation• Issues of scale up

Working volume approx 10mL• Control of complex polymers

Synthesis and impact on properties• Stability

Chemical and physical• Cost of goods

Greater than drug costs?• Toxicity

Nanotechnology issues

O

OH

NH2

HO OOO

OH

NH2

HO OO

OH

NH2

HOO O

OH

NH2

HO OO

OH

NH2

HO O

n

HO

O

Realistic values ≈ 10n

Conclusions

• Not yet - “set the heather alight!”Struggling to break through

• Amorphous systemsIncreasing acceptance – solubility only – or maybe not?

• Experimental promise – not realized clinically• Not simply drug – but whole system

Efficacy, variability, biological interaction, manufacture and control• Likely to arrive

Bioavailability improvement• Watch this space

Recent QuoteDespite the demonstrated advantages by the preclinical studies, further studies on improved understanding of the interactions of SLNCs with biological tissues of the target site is necessary for efficient designing functional nanoparticles for clinical applications. Mu, H., Holm, R., Expert Opinion Drug Delivery 2018;15;771-785

ReviewsTran, S., et.al., Clin.Trans.Med., 2017;6;44Ventola, C.L., P&T., 2017;42;742-755

Thank you

• Funder – Cancer Research UK

• CollaboratorsMany and varied

Local, national and international

• Organisers - Invitation

• You for listening

Recommended