NON LINEAR SOIL STRUCTURE INTERACTION IMPACT … 3... · NON LINEAR SOIL STRUCTURE INTERACTION :...

Preview:

Citation preview

NON LINEAR SOIL STRUCTURE INTERACTION : IMPACT ON THE 

SEISMIC RESPONSE OF STRUTURES

Alain PECKER

1OECD/NEA IAGE/ IAEA ISCC Workshop, on SSI   Ottawa , 6‐8 October , 2010

OUTLINE OF PRESENTATION

• Review of existing foundation design practiceRequired changes in design philosophy

• Examined foundation behavior during cyclic loadingModeling aspects through dynamic macroelement

• Assess the impact of foundation non linearities and variability of seismic motion on structural behavior

• Draw some preliminary conclusions2

FOUNDATION DESIGN PHILOSOPHY

• Foundations are designed to remain elasticduring earthquakes

foundation cannot be easily inspected and repaired after an earthquake

• Ductility demand restricted to superstructure

• Alternative approachAccept permanent (limited and controlled) displacements at foundationPerformance based design ⇔ displacement based design

3

MOTIVATION FOR DISPLACEMENTS EVALUATION

• Soil structure interaction plays a dominant role in seismic response of the structure 

Beneficial or detrimental ?? Controversial but all linear elastic studies

• Permanent foundation displacements affect the performance of the structure

4

WHY CONSIDERINGFOUNDATION NONLINEARITY / INELASTICITY  ?

• Recent records revealed very strong seismic shaking

1994  Northridge      :  0.98 g ,  1.40 m/s1995  Kobe :  0.85 g ,  1.50 m/s      

and SA   values   reaching    2 g

• Retrofitting of existing/damaged structures impossible to accomplish elastically

5

MOSS LANDING (Loma Prieta, 1989)

6

MEXICO(Michoacan, 1985)

7

8

IMPLICATIONS OF NON LINEARITIES GEOTECHNICAL EARTHQUAKE ENGINEERING

• Sliding of foundation

• Foundation uplift

• Partial loss of bearing capacity

9

θc

CENTRIFUGE TESTS(Gajan et al., 2005)

10

DIFFICULTIES OF NON LINEAR DYNAMIC ANALYSES

• Analyses are time consuming & expensive to runEspecially if soil is modeled (3D continuum)

• Results are very sensitive to small changes in input data

Input motionStructural characteristicsSoil characteristics

11

N

MV

NEAR FIELD

FAR FIELD

K C

Nonlinearities :

• Geometrical (interface behavior) Uplift model

• Material (elasto‐plastic soil behavior) Plasticity model

Wave propagation :

• Dissipation of radiation energy

•Dynamic elasticimpedances

DYNAMIC MACRO ELEMENT

12

GENERALIZED FORCES AND DISPLACEMENTSRigid circular footing under planar loading

Q q?←⎯→

max

1N

V

M

Q DNQ Q DV

DNQ M

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1N z

V x

M y

q uq q u

Dq Dθ

⎡ ⎤⎡ ⎤⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

xu

zu

yθN

MV

el up plq q q q= + +

MECHANISM DISSIPATION REVERSIBILITY NON‐LINEARITY  MACROELEMENT

Elasticity No Reversible No Elasticity

Uplift Non –dissipative Reversible Geometric Non‐linear 

elastic model

Soil Yielding Dissipative Irreversible Material

Associated Plasticity model

MODEL COMPONENTS

14

Possible load states are limited by ultimate bearingCapacity of foundation

Phenomenologicalnon‐linear elastic model

Elastic soil

NQ

MQ

Nq

Mq

MQ

Mq

0MQ

0Mq

MQ

Nq

( )Q qqK=

1. Matrix        depends explicitly on  

UPLIFT ON AN ELASTIC SOIL

K q2. No influence of         on uplift  VQ

[Crémer et al (2001)][Wolf (1985)]

Ellipsoidal bounding surface

NQ

,M VQ Q

Hypoplastic bounding surface plasticity1. Cyclic loading2. Continuous variation of plastic modulus3. Numerical implementation 

DQP

FOOTING BONDED ON A COHESIVE SOILNo uplift allowed

Associative        flow rule

soilSoil: UndrainedConditions

Interface:Uplift

Uplift

Associated Plasticity

DEFINITION OF ULTIMATE LOADS

u

σ

σ

τ

τ

Zero dissipation

SURFACE OF ULTIMATE LOADS(Chatzigogos et al, 2007)

NQVQ

MQ0

1

Total footing detachment

Ellipsoidal Bounding Surface

Uplift Initiation

UPLIFT – PLASTICITY COUPLINGVQ

NQ

Toppling limit

NQ

MQ

Elastoplastic response          

Elastoplastic response with uplift

Ultimate surface

[Chatzigogos et al, 2010]

Total footing detachment

SWIPE TESTSImposed Horizontal Displacement

20

DIFFICULTIES OF NON LINEAR DYNAMIC ANALYSES

• Analyses are time consuming & expensive to runEspecially if soil is modeled (3D continuum)

• Results are very sensitive to small changes in input data

Input motionStructural characteristicsSoil characteristics

21

INCREMENTAL DYNAMIC ANALYSIS(Cornell, 2002)

• Series of nonlinear time histories analysesSame time history scaled to increasing amplitudesTrack of characteristic quantities of the response

• IDA curve is a plot of selected IM vs selected DM

• IDA curve set : collection of IDA curvesSeveral time histories representing one EQ scenario for one selected IM and DM

22

EXAMPLES OF IDA CURVES

23

IDA curve

IDA curves set

INCREMENTAL DYNAMIC ANALYSES

• Series of non linear time history analyses30 records representing an earthquake scenario M=6.5‐6.9     d=20‐30kmTime histories scaled up according to Intensity Measures (IM)

• pga , SA(TS) , SA(TSSI) , CAV

• Damage measures (DM) calculatedFoundation settlements (residual or maximum)Foundation rotations (residual or maximum)Deck drift (residual or maximum)Structural ductility demand ……

24

EXAMPLE : BRIDGE PIER

25

EXAMPLE OF SYSTEM RESPONSE

26

Single analysisIDA  curves  μ = f(CAV)  

STRUCTURAL DUCTILITY DEMAND  μ = f(CAV)

27

Fixed base Linear SSI

Non linear SSI

μ

CAV

FOUNDATION SETTLEMENTS

28

Non linear SSI

Price to pay for change in ductility demandNo sign of distress even for increasing motion

RESULTS OF NUMERICAL ANALYSES

• Consideration of non linear soil structure interaction beneficial 

drastically reduces the ductility demand in the structure

• Counterbalanced bylarger displacements and rotations at the foundation

May become unacceptable

• Variability in the response becomes large as more demand is placed on the foundation

29

REMAINING ISSUES• Increased variability 

care must be exercised before accepting to transfer the ductility demand from the structure to the foundationthorough investigation of the variability of the response

• Requires careful definition of acceptable criteriafor the foundation performance

• IDA may represent a convenient tool for analysis30

CONCLUSION

• It is time to move from the concept ofductility demand restricted to the superstructureelastic behavior of foundations 

• Tocontrolled share of ductility demand between the superstructure and the foundation

31

Recommended