No. +**,p.-/.+ · ˘ˇ ˆ ˘˙˝˛˚˜ !˙˝ ˛"˚ #$% ˘ ˙ &˙’() * +" ,- ˆ ./ 0...

Preview:

Citation preview

���������� �������

� � � �*

Experimental Study of Water Redistribution Measurement in the Model

Earthen Wall and its Numerical Analysis

Takeshi ISHIZAKI*

* National Research Institute for Cultural Properties, Tokyo

Abstract

In the Asian countries, there are many important wall paintings on earthen walls of temples and

other historical buildings. Because earth can be considered as a porous material, there is water

redistribution in the walls due to the change of the surrounding environmental conditions.

Water evaporates under dry conditions from the wall surface and salts accumulate near the

surface zone and can cause salt e%orescence damages in the wall paintings. In order to develop

suitable protective measures, it is necessary to know the water content profiles and water

movement in the earthen walls. For this purpose, a model earthen wall has been built up in the

historical folklore museum in Sapporo. The water redistribution in the earthen wall was

measured by using a TDR (Time Domain Reflectometry) apparatus. The numerical simulation of

water movement in the model wall was performed with the Delphin. program developed by the

TU Dresden. The material data, such as moisture retention curve, liquid water conductivity and

water vapor di#usivity of the model earthen wall and climate data of the location Sapporo were

taken into account for simulation. For development of suitable protective measures, it is quite

important to have non destructive methods to understand the water regime in porous materials.

The good agreement between simulation results and measured moisture profiles in position and

time show the validity of using the Delphin. program for development and evaluation of

conservation measures of historical buildings and stone monuments.

Key words : historical building, earthen wall, water redistribution, TDR (time domain reflecto-

metry), numerical analysis

+� � � � �

����� �� �� ������ ��� ��� ������ ��� �� !� !"#��� $� �%�&��'()*+,� -./012�34%56�� 789):;,�<=$ *>?@)�A� ����!BCD!E$FG��H� E�FGIJK;LM �,2,N��OH+,PQ��� �!O!&R)S�TU$BC%� VM�W�!X0H�Y,;��XZ� [\H/]^_[`��!ab� cb!d�9

e��� ���f`g�$hij Hkl��mn)SA� $op�;�� q6l� rstu)vwV�,;�[\!xy[z!���f`g�):;,�cb)�E�f`gD){|V�� ab)f`g}I/ ~���� �!E!��!�)� f`g!��E)���p�;�hi$f`g}I���PQ+� �!G�&R)�"��!TU)SAf`g$� �� �Ishi-zaki et al., ,**+��D�� ��!����rstu)vwV�,;���!����dA� .r�)��$���Y���$ .3,

dA��/��B�!�I|� ./,***m,)� ����

*¡¢� �£¤¥ ¦++*�21+- ¡¢§¨¡©ª«¬­ +-�.-

���� : ����� �B� E®®¯� TDR �°�±e²³´µ¶� ·� ¸¹ºP

J. Jpn. Soc. Soil Phys.

�»!�¼No. +**, p. -/.+ �,**/�

����

���� ������������������� ���� ����� ������������������� �Kuchitsu and Xiuye, +331�������� ��� !"#��� ����$%���&���$����'� �(%���&��)*�������%��+���,-.�/�� � ��01� ������$���2�301�'� �(%�������2�/- 45 ���!��6 �78� 9"#:$���� ,**+%�;<��&/

��/0���'(=��� � )> ,**+%�� +* 0

+%,�-��0?@!A�@ABC.����/D��;<��&/0� ;<�0�E/�� ���'F=��� � ��;<&�GH����/�'�1IJ2��� KJ�34� ��GH'� �L%.�/D���5M�6��NO�� � ����78���29���5 3��� �L%.�/:���5M2�/- 45 ���;��6 ����'� ��������� ��+��.5 4<=2P>5 01� ?Q(R@�A�ST��2UB/� ��UBV��������6�2CW TDR��DEFG��XDE/� ����6��.5 YZ[ CY\!]�2^�0��_`�'F5 �

,� �����

HI%�a����#�����/����6 � J�+'�?Q(R@�A�����#���bK2c/0���6 ���'� _`�<L�U�� � ���GM�NO�

`1'� P�Cd(2ef5�Qg�RS2UX� ��2T�hU/P�iO� j�hU/P2V�kE5 �`WXX'Y���Z/-��l��[Xm�2An�/�o\/0���]��� � ��X2^p��q�!rWX/� �WX� 3WXX�8s-�_��t�2�-5 � ����NO��Y`��6 ����X����u�vaw`b2�H���� � x0� �X8-�t�2�-5 ����X� yK��,�wc6������� de�cz��C=-� {fd�g�&���-�|������ � �����|�'� }T��~1��0���6 �� ���h��`*��NO��� h����0���6 �NO�� � j/�����GM�XO��'��2W ������!rWX'� j���^ cmic��=��2WX� j��� W�0X��j�{-x�k�� ��X2W ���U�2�Xl5� ���i'� ���m��,'^������� ������,'^%�U U��� �

-� ����������

-�+ ���������UBV�������+�2n� 01�� �o�?Q(R@�A�ST��2UB/0� Rp'q=+*2 cm�r +/ cm��= . cm�,s�Rt�q= +**

cm�r +/ cm��= . cm�,s�Rt���X� Rp'G: +*2 cm��u��6 � Rp��v �+: +**

cm��u�� �' f + cmic����XP2w .I�� /I2�x��y�/�� yp�v�[X���kE=�0��� y�h� f /mmic��2 ,I��C�/�z - cm�- cmic�ef5�� ���w ,+x�� +1x2{���kE/0 �J�,�� ����|�� �x�'� � ����� ��� Rp����� 3 cm,

}��� Rp����� / cm� G�~G/0���������2DE5 01� TDR¡!nC

'� �������¢� .�� `O� .�� £ 2�2`WX��WX��¤3¥�¦§��~G/0� ¡!nC�C¨©'����}��ª,��/� ¡!nC'�x����j���kE/0� !�%DE���«¬������­�6 �&��2�®5 01�� ¡!nC'¯°©������¢O��7`O�¢�j���~G/0�TDR����DE�'� Campbell scientific±��

TDR+**�)±�°C²³"C CR+*X2]�0� CR+*

X'I��O�´¯µC� CPU2��/��X� �1¶³·@¸5 ����X��/�£D��¹�º�2»���^O FG�6 � x0� °C²p��'� CR

�+ �o� R@�A����6 ���#��Fig. + Japanese traditional house with earth-

en wall in Hokkaido Historical Village,

Sapporo.

����h` � +**¼ �,**/�36

+*X���������� PC,*2W ��� ������������ �EC� �������� TDR

+**������������ PCTDR ��� TDR !"��� #$ ���%��&�'�(�

)�'� �*�-� +,�-�./� . cm, 01� 0 mm

234 +,�+.56��7� 89:;��<��=2� �>?�@ABC5DEFG�

-�, ��������HI�JKKL�M�NOPQR STQRU2 /

KL34 JK�VW�JKXY�Z[� \] ^KL�]_R�`�89:;��>�� abcde����-f;�� TRIME-FM- g�����h+,�

- TRIME-F-F )�'� ij�kTl��m*�.�nQ � + �� � �����89:;� -2���` �opgqrst� ��N

*�, � �uvw�_ �Ix4� yz p��{/�0 cm 23R TDR !"�� P#+ �|}�� P#/ �I���I��~� ������>� � P#, �|}�� P#0

�I�� � ����� �D�r�'g����� ������%QR P#+, P#,, P#/, P#0 �p���Fr��%�/����� +3 mm, . mm, +. mm, . mm 23G� \] �� �������������'\�5 ����Fr���2�4�'5��\R���534 �4�'��QR�7� �����yz U� ����������z��8��4�'��QR�7��E +���R JK���p�����8� ¡¢�5FGN�R � , ����� �����Ix4JK +. £�2� ����¤�¥GN¦W§

�5¨[N]4 p�`�©ª5DEFG� 89:;� -/���` �«pstgqr:�� 2D�r�'y� TDR !"�� P#-, P#1 �~��S���%QR p��{/� + cm ¬­' 1 cm �\G� P#-,

P#1 �p���Fr��%�/�g(� . mm 23G� P#,, P#0 � KL + 2���Fr . mm �®¯23G�5 + cm p��{/5¬­'��7 ��Fr+. mm �®¯��qGN�R JK���p����Ix4��`°4���R� ¡¢�±WN�R ��, ��Fr��ij��²�g���

Fig. , Bamboo mesh structure of the model

wall seen from the rear side.

��- 89:;��>��7�³´ TDR !"��Fig. - Tiny TDR sensor for measuring volu-

metric water content.

��. ijp�kT��mFig. . Making earthen wall by putting mud

on the bamboo.

µ���� : p�|�;�¶·�¸QR¹�fºjg»¼ 37

�� - ������ �� ������� /�� ������ ������� ��������� ��������� !���"��#$%����� ��������&�'()���*��+"�,-� �����.�/���0 ��������123� +��0 4�5��!�6��������7-� ����"�.8�.3��& 9:�;<5��� =>?@� --�A�B ������� � B P#-, P#1�C�5&��B�������%B�D-�� ���EF� 1 cm

�//� TDRGHIJ�KLM�<������������N� OP���QRST5M:���U�V3�0 W=%:!�*�.3�� 2X �5����1��0��%Y� Z@��� ��%��[�\���%�]���23T %�����^���_%`F +2* cma� 3* cmaE!� +* cm�bcdefJg�W=%�h�i���� . ����� �� jk�l��OP����jkmT5M�����Y23� B��������&� �'()�F3+"�n!-�� jk��NMW="%:!�o��� B������ +*�� =>?@� ..��C�5��&9:�;<5���A ������� ����EF�+ cmE�25 2 cm%2��� +���� P#., P#2����%�D� WGHIJ�DL�p#-�� P#.,

P#2�����*���DqF�"M% . mm����� ��������N�OP���mT5Mrr:!�o�.3�� W=����EF� 2 cm, st"2TDRGHIJ P#+, P#,, P#-, P#., P#/, P#0, P#1, P#2�����*���DqF�u�v� -3 mm, ,. mm, +.

mm, . mm, -. mm, ,. mm, +. mm, . mm������� / ��� ��� ����� 3�� ���QRS"�. /w xy���5 y���z%jk��� $y�QRS�����

.� ���������

{|��}~�� � � �� GHIJ 9HMP

./C, �dI���A �%3.��� -*�"%�Jce�J%�&��� /� '�(�����)��%*����b�J��H 9��H����A �DL� �� � �[+�+�� +m��"%��� �Jce�J%�&��� ��C�@�,���� J��H%-.2¡¢�Jc� +�����£�%3��

/� ��������

/�+ ���!"#����@/)¤¥��¦§H�� Water poten-

tial meter 9WP.A ��������0 1� J¨J�%3�0 ©ªL 9Sald-*** 2«�i¬�A �%3.����� /� ���34?@� jk5 �0­�®6¯2°M����� {|��%%3��{��34�l�=>?@�� -3���������7������@/)¤¥ ±²8�¥���C�@9:³���� J��H%´µ��� /�;<�Jc� 9Grunewald and Bomberg, ,**,A � =%T5���Jc�>��.¶0�� ¶0����@/)¤¥"±²8�¥�·�¸�¹�/ ¹�0%,-�

$�/ {|��%%3���@/)¤¥Fig. / Water retention curve of the soil used

for the model wall.

$�0 {|��%%3���±²8�¥Fig. 0 Sorption isotherm of the soil used for

the model wall.

�º�?@) » +**¼ 9,**/A38

/�, ������������������������ ������ ����� �Burdine, +3/-� ������� !"#$%& �����" '�� ()*�+ q���� K �q� ,��-./'&0%� ����� Kcap1K �qcap� 234'�� �������5�67%89���� ,��6./'&

K�q�1��

����

��

+

pc�q���

,

dq �

::�� pc �q� � ()*�+ q�;���<�='&

Kr�q�1K�q�

K�qcap��

::�� ������>2Kcap�7?,�"@AB'�� C��,"D'&

K�q�1Kr�q�Kcap �

::�� ������ EF�G�HIJK��#$%L��MN �fclay� 234? Dane and Puckett �+33,����" O� ���,��#$%&

Kcap1���� ������ ����������

��

::�� gPQRSF�='& T�/%������ ..,U+*V/m�s�=W%&T�/%�������()*�+�>�X�2Y�1"-B&

/�- ������Z[\]�� �Z[<^_��Z[�\]SF2X�`a'b��='& �Z[\]�cdefg�7

?� h[ijkl mdrym='& h[ijkl mdry� nopqrstuvDwx��y��>2-7?4'& z�{|D}~|(���Z[\]2�I7� ���Z[���� ���N���" O� Grunewald and

Bomberg �,**,� �� �,2��7?4'& cdefg p� ���Z[������()MN2-7?4'& ���Z[��"XB'����� +Vp�()MN"D'&

DV�q�T�1D�T�

mdry

�+Vqr��p��+Vqr�,�+Vp��

::�

qr1qVqdry

qporVqdry

D �T� � �[���Z[\]�� qpor� ��+�='&�,����7%�Z[\]��>2Y�2"-B&

0� �� �������

����������� ��r�������p��������7%� }~|(���� �������qpd� Delphin .234% �Grunewald, ,***�&��� ��¡ +¢/"X7?� ������£�H

IJK�������" W?T�/%JK�5¤2¥W%&��"34'AQ¦§2Y�3"-B&Y"�¡ .�¨¡��� TDR©�ªf�«¬m-./?4'& P#,,

P#-, P#.���6§���­®¯.°/±/�,.mm,

+.mm, .mm�=W%& 0%� �¡ +���¡ .0����²³�()*�+HIJK�´µ¶�f´·���

��1 ¸¹��"34%�����Fig. 1 Liquid water conductivity of the soil

used for the model wall.

��2 ¸¹��"34%���Z[\]�Fig. 2 Vapor di#usivity of the soil used for

the model wall.

º��» : ��������"XB'���¼¹��� 39

������+*����� ������������������������������� ����+� +�� +�� !"�#������$� +�%�&�"���� ��������'($)� *+�,-���� +*�./�0�� �12. mm�34�56P#,7 ��89� -2�12 /���:�;<�,-���� $� +�)� +.�!=�12$� ,� �&�>= �12 . mm�34��6P#-7 �� $� +���� /�0�0�� 89� -0�12 +*���:�,-� ?�� �12 +. mm�34�� 6P#,7 � �&���= @�� +/���:������'A'= '� : ,-� $� ,�)������BCDEF�'G� H� I + cm�����J&K� �&�>= 6$� -7 �"��L������$� ,���C�M�� $� .��� 42� + cm�N4����= �O��1

2 . mm�� 6P#.7 ����������P�12;<�,-� : � �12 +. mm�� 6P#-7 � ,.

mm�� 6P#,7 ���������� +/���:�QR�: ,-� S� ������T4��U��� ��'�BVW2X���� Y�� Z[\]�'�� H� TDR^_`\� �a�'����������b� H�cd2Y�efg� ��� ��h ijZ[klm Delphin .

���� ������������ �������� $� +n.�o��� TDRZ[\]�p� ����!V"q�����'r2Y�

1� � � �

sts�u+��� #v$wx%���'yzY��� {|��� eV�}~C��'��A�&1Y��� ���� �'(��)��p�*M������ ��� D����(���� �+,M�p&*M�� Y2�*M�� �� ���h ��BC��'��Y2�*M�"��-�C.�"��/�� H��� �� ����0����M�1����'23��� �4$� H�� 5�6�7���8(���������� ���>= �� �������� �� �9�� T4C TDR^_`\�p& �� ������ :;$C�<�p&��� �� �������� �Y�Y$� +12$� .:��0��BV�M� ���� �������� ����_$�����=� efg� ��� ��h ijZ[klmDelphin .���� �� ¡�\�¢_�>?£¤���� ����¥¦�§"¨�� ©�@' �4Y : � ���23C���%ª����� ��Aª��� B��C��#C/'D2Y ���p=�D2Y �� ������� �����0��!�"q'r2Y ���� ij�E� �� ��h ijZ[klm Delphin .'� �� ���h �F«��A�G¬���������� #v$�}~CHM­�®¯�o��� IJ°$C�<�K±����~3��� LM²��� � ¡�\�¢_ij³<�� ´µ£¤¶"µ�%ª�C/12�����0¶��h �F«�B� H� HM­�K±����LG¬����cd2Y�

� � � �

Burdine (+3/-) : Relative permeability calculations

from pore size distribution data. Petroleum

Trans. Am. Inst. Mining Eng., +32 : 1+�12.

�3 ij·¸¹�>?����������ºN6$� .7

Fig. 3 Location of the monitoring position of

water content (Stage .).

�+* ������ ������ 6$� +n.7Fig. +* Measured volumetric water content

and calculated (Stage +n.).

�»�%Oª P +**¼ 6,**/740

Dane, J.H. and Puckett, W.E. (+33,) : Field Soil Hy-

draulic Properties Based on Physical and Miner-

alogical Information. In : van Genuchten M.T. et

al. (ed.) (+33-), Proceedings of the International

Workshop on Indirect Methods for Estimating

the Hydraulic Properties of Unsaturated Soils,

Riverside (California) USA, -23�.*-.

Grunewald, J. (,***) : Documentation of the Numeri-

cal Simulation Program DIM-.+, Volume + : The-

oretical Fundamentals and Volume , : User’s

Guide. Delphin..+ program installation available

on the ftp-server ftp : //+.+.-*..+.+3. of the Insti-

tute of Building Climatology.

Grunewald, J. and Bomberg, M. (,**,) : An engineer-

ing approximation of material characteristics for

input to Heat, Air and Moisture transport simu-

lations. ++. Bauklimatisches Symposium an der

TU Dresden.

Ishizaki, T., Simunek, J. and van Genuchten, M. Th.

(,**+) : Deterioration Mechanism of Stone, Brick

and Soil Building Materials, Proc. Corrosion &

Prevention-*+, Durability of Materials, .+st

Annual Conference, Newcastle, Australia, ,* : +�+-.

Kuchitsu, N. and Duan Xiuye. (+331) : Geological En-

vironment of the Mogao Grottes at Dunghuang.

Proc. of Conservation of Ancient Sites on the

Silk Road, ,..�,.2.

� �

���������� �������������������� �� !"#$��$% ��&'()*+,-.�/0���123�456�� ��789:�;<6�=% ��123�>?�@ABC% D245�E0�5�FGH���>?$IJC��&KL�� MNO&GHP.=�Q� ��RSTU&VW�X$% ��1233Y�2345&Z[��\L�M=��]$��� MM$�% ^_��&`aC% bc TDR23dZef&g��% ��`ah233Y-.&dZCF� ij% ��1233Y-.�% klmnopqrs$tBCFu% 2345vIwxyz{ Delphin .&g��vICF� |_=vI}~�@% ����l���ovI�����12345&��6�X$��$��M=�3�0F�

����� : ,**/� /� +2������ : ,**/� 0� 3 �

����� : ��12345��6��n�|_=vI 41

Recommended