Nitrate leaching to groundwater under agricultural land ...1.pdf · Nitrate leaching to groundwater...

Preview:

Citation preview

Nitrate leaching to groundwater under agricultural land uses – a case study from Israel

Daniel Kurtzman, Yehuda Levi & Roi Shapira

MARSOL, Water Quality meeting, Algarve Portugal, 26-6-2015

100 years of intensive agriculture with available mineral

nitrogen

“… improved nitrogen fertilization of the soil brings new nutritive riches to

mankind … the chemical industry comes to the aid of the farmer who, in the

good earth, changes stones into bread.”

Fritz Haber ended his Nobel Prize (1918) lecture with the following words

Erisman et al., 2008, Nature

Geoscience

“The situation has, however,

developed into overuse of nitrogen

in agriculture as a straightforward

‘cheap’ insurance against low

yields with all the concomitant

negative side effects.”

Kourakos et al., 2012 Water Resources Research

“Nitrate-nitrogen is by far the most common type of

groundwater contamination associated with agricultural

activities [e.g., Spalding and Exner, 1993; Harter et al.,

2002; Spruill et al., 2002; Van Drecht et al., 2003; Burow et

al., 2010; Sutton et al., 2011; United States Environmental

Protection Agency Science Advisory Board (USEPA), 2011].”

Nitrate problems in the Israeli Coastal Aquifer are

concentrated in cultivated land on lighter soils

Kurtzman et al., 2013

Water and nitrate fluxes are calibrated to deep vadose-

zone data

Strawberry

Persimmon

Potato

Citrus

����������4���� + ����������4

���� = �������������������4

���� � − ����������4���� − ������4��������4 − ����������������4 − ����������������4

������4 = ����−����4������4

����������3���� = ��

�����������������3���� � − ����������3

���� − ������3��������3 + ����������������4 − ������������������3

ShK

z

hhK

zt

h −

+∂∂

∂∂=

∂∂

)()()(θ

Flow – Richards Eq. with root uptake (van Genuchten-Mualem hydraulic functions)

Transport – ADE Eq. with sink\source terms (linear adsorption for NH4)

Nitrogen transient transport modeling (Hydrus1D)

root zone CNO3

Up

-ta

ken

CN

O3

Up-scaling to a groundwater flow and nitrate-transport model

(MODFLOW, MT3DMSU)

Model area

13 km2

Vegetables

Deciduous

Citrus

Boundary C.

Flow Calib.

Transport C.

Landuse coverage

2000 – Survey of

Israel

Flow model

Nitrate transport model model

Top layer of the ground water model

1) Land use (color)

2) Depth of the

unsaturated zone (m)

Each landuse

unsaturated model was

extended to all the

depths that it appears

Duration of runs

Unsaturated models

1962-2012

Groundwater model

1992-2012

Vegetables Deciduous Citrus Non-

cultivated

Water flux - recharge (mm/yr) 330 400 200 170

NO3- flux to water table

(kg-N/ha/yr)200 130 120 10

NO3- concentration (mg/l) 268 144 266 20

Long-term average fluxes

Average Conc.Bias MAE

N Well nameCalculated Measured

67.7 20.0 -47.8 47.8 14

63.6 51.1 -12.5 12.5 10

54.6 52.9 -1.7 14.6 31

68.6 54.1 -14.5 14.5 24

73.3 59.3 -14.0 14 9

73.3 60.5 -12.8 15.1 13

75.1 65 -10 12.7 13

63 66.5 3.6 9.3 17

75.9 70 -5.9 11.4 10

75.3 75 -0.3 9.9 15

76.8 87 10.2 11.6 13

70.3 100.5 30.1 30.1 14

89.5 115.2 25.7 26 11

71.6 130.4 58.8 58.8 14

71.3 72.0 0.3 20.1 13 Average

8.1 28.5 Standard Dev.

0

20

40

60

80

100

120

0 50 100 150

Ca

lcu

late

d m

g/l

Measured mg/l

Calibration of the nitrate-transport model (1)

AverageBias MAE

NCalculated measured

18.3 20.0 1.6 8.2 14

54.0 51.1 -2.9 4.0 10

52.3 52.9 0.6 14.2 31

64.4 54.1 -10.3 10.3 24

63.4 59.3 -4.0 4.7 9

53.2 60.5 7.3 8.0 13

68.1 65.0 -3.1 10.6 13

67.2 66.5 -0.6 10.8 17

78.8 70.0 -8.8 13.2 10

77.3 75.0 -2.3 10.4 15

91.1 87.0 -4.1 11.5 13

104.1 93.5 -10.6 10.6 1

97.0 100.5 3.5 11.6 14

107.4 115.2 7.8 14.8 11

118.9 130.4 11.5 18.9 14

72.2 72.0 -0.6 11.2 13 Average

25.8 28.5 Standard Dev.0

40

80

120

160

0 40 80 120 160

Ca

lcu

late

d m

g/l

Measured mg/l

0

50

100

150

200

250

300

350

0,1 0,6 1 2,8 5 10

Nu

mb

er

of

mo

de

l ce

lls

Nitrate Flux multiplier

Calibration of the nitrate-transport model (2)

Simulations of the future with different N-

Fertilization rates

30

40

50

60

70

80

90

100

110

120

2012 2017 2022 2027 2032 2037 2042 2047 2052

NO

3 m

g/l

Year

1

0.75

0.5

70 mg/l

Fertilization Level

Average NO3 in all wells

Conclusions

• Nitrate contamination in groundwater is a worldwide problem concentrated in aquifers under cultivated land in relatively light soils.

• At the 10 km2 scale – the fluxes obtained by vadose-zone analysis on the field scale and farmers reports, classified to a small number of crops, were sufficient for reproduce the total mass of water in the aquifer.

• Nevertheless, it can not reproduce the spatial variability of groundwater nitrate concentrations – Only extremely high nitrate fluxes at the water-table can explain the very high concentrations – this is probably partly due to problems or extreme practices in the near vicinity of the well.

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160

N u

pta

ke (

mg

-N/d

ay

)

N in root zone (mg/L)

--

RU_N = In_N - Dr._N - Sinks_N

Sinks_N= In_N - Dr._N

Kurtzman et al., 2013

0

100

200

300

400

500

600

700

800

900

0 10 20 30

Dep

th (c

m)

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500

Dep

th (c

m)

0

100

200

300

400

500

600

700

800

900

4% 9% 14% 19%

Dep

th (c

m)

O1

Sandy loam

Effluents

TI1 TI2 TI3TI1 TI2 TI3TI1 TI2 TI3

0

100

200

300

400

500

600

700

800

900

0 5 10 15

De

pth

(cm

)

0

100

200

300

400

500

600

700

800

900

20 40 60 80 100 120

De

pth

(cm

)

0

100

200

300

400

500

600

700

800

900

0% 10% 20% 30% 40%

Dep

th (

cm)

O2

Sandy loam

Effluents

Water content (g g-1) Cl- (mg kg-1) NO3 -N(mg kg-1)

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40

De

pth

(cm

)

0

100

200

300

400

500

600

700

800

900

0 100 200 300

De

pth

(cm

)

0

100

200

300

400

500

600

700

800

900

0% 5% 10% 15% 20% 25%

De

pth

(cm

)

O3

Sandy loam

Fresh, local

well

-

0

50

100

150

200

250

300

0

200

400

600

800

1000

1200

19

85

-19

86

19

86

-19

87

19

87

-19

88

19

88

-19

89

19

89

-19

90

19

90

-19

91

19

91

-19

92

19

92

-19

93

19

93

-19

94

19

94

-19

95

19

95

-19

96

19

96

-19

97

19

97

-19

98

19

98

-19

99

19

99

-20

00

20

00

-20

01

20

01

-20

02

20

02

-20

03

20

03

-20

04

20

04

-20

05

20

05

-20

06

20

06

-20

07

20

07

-20

08

20

08

-20

09

20

09

-20

10

NO

3-N

flu

x (

kg

/ha

/ye

ar)

Wa

ter

flu

x (m

m/y

r)

Precipitation Recharge (21 m) NO3-N bottom flux

(a)

0

50

100

150

200

250

300

0

200

400

600

800

1000

1200

19

85

-19

86

19

86

-19

87

19

87

-19

88

19

88

-19

89

19

89

-19

90

19

90

-19

91

19

91

-19

92

19

92

-19

93

19

93

-19

94

19

94

-19

95

19

95

-19

96

19

96

-19

97

19

97

-19

98

19

98

-19

99

19

99

-20

00

20

00

-20

01

20

01

-20

02

20

02

-20

03

20

03

-20

04

20

04

-20

05

20

05

-20

06

20

06

-20

07

20

07

-20

08

20

08

-20

09

20

09

-20

10

NO

3-N

flu

x (

kg

/ha

/ye

ar)

Wa

ter

flu

x (m

m/y

r)

Precipitation Recharge (11 m) NO3-N bottom flux

(b)

Kurtzman et al., 2013

Fertilizer

addition

N

Irrigation

water

N

Fertilizers

N

Root uptake

Nitrate Flux to

GW

Orchard 1 – irrigated with treated waste water

100% 70 320 230 110

75% 70 240 220 60

50% 70 160 180 30

25% 70 80 130 20

0 70 0 60 20

Orchard 2 – Irrigated with local groundwater

100% 90 240 230 70

75% 90 180 210 30

50% 90 120 180 20

25% 90 60 120 10

0 90 0 80 10

Simulation of reduced fertilization with the calibrated model - N Fluxes•Averages of 25 years starting 25 years after the change in fertilization

•100% - current reported fertilization rate

•N Fluxes in kg/ha/yr

Simulated NO3-N vadose-zone profiles

Where do we want to be from the aquifer management point of view?

Black vertical lines – nitrate drinking water standard (Israel)

ABCABCABc

–211464335359397378421424374

328363368

425279279207233337574112170

202921172129541114

203113

454520

40-6035-5540-50

-Kurtzman et al. 2013

-100

-80

-60

-40

-20

0

De

pth

Be

low

Se

a L

eve

l (m

)

Bias MAE

18.3 20.0 1.6 8.2 14

54.0 51.1 -2.9 4.0 10

52.3 52.9 0.6 14.2 31

64.4 54.1 -10.3 10.3 24

63.4 59.3 -4.0 4.7 9

53.2 60.5 7.3 8.0 13

68.1 65.0 -3.1 10.6 13

67.2 66.5 -0.6 10.8 17

78.8 70.0 -8.8 13.2 10

77.3 75.0 -2.3 10.4 15

91.1 87.0 -4.1 11.5 13

104.1 93.5 -10.6 10.6 1

97.0 100.5 3.5 11.6 14

107.4 115.2 7.8 14.8 11

118.9 130.4 11.5 18.9 14

72.2 72.0 -0.6 11.2 208

25.8 28.50

40

80

120

160

0 40 80 120 160

0

50

100

150

200

250

300

350

0,1 0,6 1 2,8 5 10

-- –

50% 75% 100%

19 21 27 16

57 64 77 60

61 68 82 60

60 67 79 69

59 68 83 70

62 73 96 73

66 77 101 79

71 80 99 78

73 84 107 88

75 86 109 90

84 101 138 106

78 98 139 122

89 103 130 128

86 108 157 129

88 112 164 134

69 81 106 87

11.5 16.5 29.1 26.7

1)

2)

3)

1)

2)

3)

-

Dahan et al. 2014

P value (two tail)2*10-5

•-

--

-

Thanks

Collaborations

Bridget Scanlon – University of Texas, Austin

Ofer Dahan – Ben Gurion University of the Negev, Israel

Research Students

Roi Shapira – Hebrew University of Jerusalem

Shahar Baram - Ben Gurion University of the Negev

Funding

Chief Scientist of Ministry of Agriculture - Israel

Israel Water Authority

Jackson School of Geosciences, University of Texas, Austin

Farmers who let me sample their soils and vadose zones

Depth (cm) 0 - 15 15 - 30 30 - 45 45 - 60 60 - 75 75 -90O1 0.60 0.03 0.13 0.20 0.08 0.17O3 1.27 0.48 0.24 0.08 0.05 0.03

Table 2. Nitrification potential at different depths, average of3 samples in each depth (mg-N-NO2

- L-1 d-1).

-9

-6

-3

0

5% 15% 25% 35%

De

pth

(m

)

θ (L3/L3)

Water content

Observed Modeled

-9

-6

-3

0

5% 15% 25%

De

pth

(m

)

θ (L3/L3)

Water content

Observed Model

-9

-6

-3

0

0 500 1000 1500 2000

De

pth

(m

)

Concentration (mg/l)

Cl pore water concentration

Observed Model

-9

-6

-3

0

0 50 100 150 200 250

De

pth

(m

)

Concentration (mg/l)

N-NO3 pore water concentration

Observed Model

-9

-6

-3

0

0 500 1000 1500

De

pth

(m

)

Concentration (mg/l)

Cl pore water concentration

Observed Model

-9

-6

-3

0

0 100 200 300

De

pth

(m

)

Concentration (mg/l)

N-NO3 pore water concentration

Observed Model

Model fittings

Orchard 1 Orchard 2

nitrate-NO3

-nitrate-nitrogen–NO3-N

[NO3-] = 4.43[NO3-N]

•–

•–

•–-•--•-•-•-

-R

��= ��������+��������� � ���������2��10��

� ��������������������2��10��

(1)

������3−�� = ��� ���������3−�������������2��10��

� ���������2��10��

(2)

����������4���� + ����������4

���� = �������������������4

���� � − ����������4���� − ������4��������4 − ����������������4 − ����������������4

������4 = ����−����4������4

����������3���� = ��

�����������������3���� � − ����������3

���� − ������3��������3 + ����������������4 − ������������������3

ShK

z

hhK

zt

h −

+∂∂

∂∂=

∂∂

)()()(θ

Flow – Richards Eq. with root uptake (van Genuchten-Mualem hydraulic functions)

Transport – ADE Eq. with sink\source terms (linear adsorption for NH4)

Nitrogen transient transport modeling

root zone CNO3

Up

-ta

ken

CN

O3

Hydrus-1D

) –

first

arrival

Russo et al., 2013

Recharge flux (mm yr-1)

N-NO3- flux (kg

ha-1 yr-1)r* between Cl- and N-NO3

- profilesO1 (sandy loam) 170 - 230 80 - 130 0.54 – 0.98O2 (sandy loam) 190 - 330 50 - 220 0.44 – 0.67O3 (sandy loam) 90 - 150 70 - 140 0.82 – 0.99O4 (clay) -0.25 – 0.39

Russo et al., 2013

–––

4.79.8

16.5

-N

170 200 400 330 mm/year

1 12 13 20 Kg-N/dunam/year

20 266 144 268 mg/l

1962-2012

-0.00

2.00

4.00

6.00

8.00

19

70

19

72

19

74

19

76

19

78

19

80

19

82

19

84

19

86

19

88

19

90

19

92

19

94

19

96

19

98

20

00

20

02

20

04

20

06

20

08

20

10

20

12

י לאו

רדהי

ד מ

עו)

רט

מ(

שנה

-100

-80

-60

-40

-20

0

De

pth

Be

low

Se

a L

eve

l (m

)

30

15

10

4.5

K m/dayBias (m) MAE (m)

0.15 0.31 8

0.21 0.4 6

0.29 0.48 20

-0.008 0.25 9

-0.31 0.31 1

-0.31 0.34 18

0.49 0.61 20

-0.56 0.72 27

0.097 0.19 8

0.45 0.45 6

0.003 0.48 123

2

4

6

8

10

2 4 6 8 10

Bias MAE

67.7 20.0 -47.8 47.8 14

63.6 51.1 -12.5 12.5 10

54.6 52.9 -1.7 14.6 31

68.6 54.1 -14.5 14.5 24

73.3 59.3 -14.0 14 9

73.3 60.5 -12.8 15.1 13

75.1 65 -10 12.7 13

63 66.5 3.6 9.3 17

75.9 70 -5.9 11.4 10

75.3 75 -0.3 9.9 15

76.8 87 10.2 11.6 13

70.3 100.5 30.1 30.1 14

89.5 115.2 25.7 26 11

71.6 130.4 58.8 58.8 14

71.3 72.0 0.3 20.1 208

8.1 28.5

0

20

40

60

80

100

120

0 50 100 150

ABCABCABC

-12471105

-81011

-Cl 421192 266 198 179 188 234 232 263

R-211 464 335 359 397 378 424 374

(NO3-

N 96 63 63 47 53 76 25 38

FNO3-N-

Recommended