Nanostructured Materials Processing: Powders, Patterns & Pores

Preview:

DESCRIPTION

Nanostructured Materials Processing: Powders, Patterns & Pores. 500nm. Sundar V. Atre, Ph.D. 500nm. 500nm. Research Overview. Nanomaterials. ceramics , polymers, metals, composites. Microfeatures. Applications. channels, pillars, wells. sensors, medical, energy storage, packaging. - PowerPoint PPT Presentation

Citation preview

Nanostructured Materials Processing: Powders, Patterns & Pores

500nm

500nm 500nm

Sundar V. Atre, Ph.D.

Research Overview

Microfeatures

Nanomaterials

Applicationsceramics, polymers, metals, composites

channels, pillars, wells sensors, medical, energy storage, packaging

Cellulose Nanocrystals-CNXLs

Top one-side plate

Film

Two-side plate

Film

Two-side plate

Film

Two-side plate

Top Support Plate

Bottom one-side plate

Film

Bottom Support Plate

Fluid Collection Cap

Fluid Collection Cap

Diffusion Area

CNXL composite membranes CNXL composite membranes for improved selectivity and stiffnessfor improved selectivity and stiffness

Goran JovanovicJohn SimonsenSweda Noorani

US Patent 7955504 B1

Ceramic Nanoparticles: n-AlN

Valmika NathanGreg PurdyGrant Kim

(Powder Technology –submitted; Powdermet 2010; NSTI Nanotech 2010)

AlN: Powder Injection Molding

shape

flow

debind

sinter

powder final

Powder Injection Molding International 2010; SME 2011; ABM 2011

AlN PIM: Sintering

1100 °C 1300 °C 1500 °C

µ-n

AlN

• Liquid phase formation was observed at 1500 °C• n-Y2O3 and n-AlN lead to liquid phase formation at lower temperatures (100 °C

lower than prior reports)

• Nanorod formation was observed at 1100 °C for monomodal µ-AlN

500 °C

µ-A

lN500 °C 800 °C 1100 °C

Valmika Nathan

AlN PIM: Sintering

• Higher initial solids loading lead to lower shrinkage for bimodal sample (14±1%) than the conventional monomodal ones (>20%)

(c) 1650 °C

Ceramics International 2012 Valmika Nathan

Si3N4 UAV Engines

Juergen LenzJOM, 2012

• Higher fuel efficiency at higher operating temperature

• Light weight

• Smaller component size: better fit with process and materials

PIM of Si3N4 Nanoparticles

Green Sintered

PIM: BaTiO3 Microwells

Valmika NathanPowder Injection Molding International 2011

Alternative: Green Micromachining

• Micromilling

a b

• Laser

Carl WuValmika Nathan

Burak Ozdoganlar

Patterned Polymer Films

Valmika Nathan

Modified PVDF

Ceramic Nanoparticles: n-SiC

Plasma Pressure Compaction

ρ

Work

Master Sintering Curve

Microstructure

Armor

Electronic Packages

n-SiC: Microstructure-Properties

1600 1800 20000

8

16

24

Izhevskyi et al (5min, 1.5 MPa)Hilmas et al (1h, 25 MPa)Mulla et al (5min)Cao et al (1 h, 50 MPa)Tanaka et al (30 min)This Work (30 min, 20 MPa)

Har

dnes

s (G

Pa)

Sintering Temperature C)

1 μm

Manish Bothara, T. S. Sudarshan, Seong-Jin Park, Rand German

(Metallurgical & Materials Transactions, 2010, Science of Sintering 2011)

Pores: Anodization

200 nmA

C

B

Negar Monfared

ABM 2011

Pores: Nanorod Templates

Negar Monfared

PUSZ, 9 hr UV curing, 2 hr thermal curing at 600°C (1.2°C/min),

pyrolysis at 1100°C (1.2°C/min)

PUSZ , 5 minutes vacuum, 5 hr UV, no thermal curing, pyrolysis for 2 hr at

1100°C (5°C/min)

Polyurea silazane (PUSZ)

ABM 2012

Pores: Biosensors

Nearly 5 Orders of MagnitudeIncrease In Performance

Shalini Prasad

Hypothesis: Macromolecular Crowding

20 nm

A

C

B

D

Integrating Length Scales

PAA functionalization: Langmuir 2011

Summary

500nm500nm 500nm

• Nano-structured materials: particles, patterns, pores

• Integration with microsystems

• Material systems: polymers, metals, ceramics

• Applications: energy, healthcare, homeland security, packaging

Recommended