nanomat design-challenges n opp.pdf

Preview:

Citation preview

Nanomaterials Design: Challenges Nanomaterials Design: Challenges and Opportunitiesand Opportunities

Professor G.Q. Max Lu Professor G.Q. Max Lu Professor G.Q. Max Lu Professor G.Q. Max Lu Fed Fellow FTSEFed Fellow FTSEFed Fellow FTSEFed Fellow FTSE

ARC Centre for Functional NanomaterialsARC Centre for Functional NanomaterialsARC Centre for Functional NanomaterialsARC Centre for Functional NanomaterialsThe University of Queensland, AustraliaThe University of Queensland, AustraliaThe University of Queensland, AustraliaThe University of Queensland, Australia

Http://Http://Http://Http://www.arccfn.org.auwww.arccfn.org.auwww.arccfn.org.auwww.arccfn.org.au

ARC Centre for

Functional

Nanomaterials

ARC Centre for

Functional

Nanomaterials

The University of Queensland (UQ)

• Founded in1910• 38,100 students

• 6,400 international students from130 countries

• 10,304 postgraduate students

• Comprehensive & research intensive

Australian Institute of Bioengineering and Nanotechnology (AIBN)

• The University of Queensland, Queensland Government, and a private benefactor (The Atlantic Philanthropies) have together provided over $72m to establish AIBN.

• It conducts multidisciplinary research at the interfaces between the physical and biological sciences, to develop new materials, devices and processes based on bioengineering and nanotechnology addressing key health, energy andenvironmental issues

Vision

To build a world-class institute of excellence, with collaborative links to leading research institutions and industries

AIBN Research Programs

1. Nanotechnology for Energy & the Environment

2. Cell & Tissue Engineering

3. Systems Biotechnology

4. Biomolecular Nanotechnology

$72m, 16 Groups/Centres, With 280 researchers

www.aibn.uq.edu.au

Nanoparticles

NanotubesThin films/membranes

Nanoporous/composite

products

techniques materialsNanoscale Sciences Nanoscale Sciences

Too

ls:

X-R

ays,

NM

R, M

icro

scop

y,

Spec

tros

copy,

Mol

ecula

r m

odel

ling A

pplication

s:

Clean

energy,en

vironm

ent

health

care•• 4 Universities4 Universities

((UQ,UNSW, ANU, UWS)UQ,UNSW, ANU, UWS)

•• over 100 researchersover 100 researchers

•• $12.5M $12.5M

Max Lu Group: >50Senior researchers:Joe da Costa

Jorge Beltramini

Lianzhou Wang

Mikel Duke

Gordon Xu

Denisa Jurakuva

Shizhang Qiao

Xiangdong Yao

Http://www.arccfn.org.au

ARC Centre for

Functional

Nanomaterials

ARC Centre for

Functional

Nanomaterials

Centre StructureCentre StructureInternational

Advisory Board

Management Committee Program leaders, nominated CIs

Director –

Prof Max Lu

Admin Assistant

Chief Op. Officer Steve Coombs

NSW/ACT Node

Director –R. Amal

Nano-Biomaterials(Matt Trau)

Films &Membranes(Ian Gentle)

Comput.Nanomaterials

Science(Sean Smith)

Nano-Particles

(Rose Amal)

Nanotubes (Ying Chen)

Functional NanomaterialsFunctional Nanomaterials

From Nanostructures to Nano-Products

Examples of nanostructures in nature and nanotechnology

Proof of Concept

ProductMarket

Productsdevelopment

Properties

Testing

Materials Discovery

Molecular understandingand design

Research and Innovation PipelineResearch and Innovation Pipeline

Computational

Nanotechnology

Experimental Research

Programs

SPRINT

Industrial Linkages

Astute Nanotechnology

First Best

Nanotechnology Applications

Hea

lth

Agricu

lture

Man

ufa

cturing

Ener

gy/

Envi

ronm

ent

Min

eral

Res

ourc

esICT

Tra

nsp

ort

Water and Energy

Applications of nanomaterials

• Water – Desalination (nanofilters), water

reuse and recycling (photocatalysis)

• Energy – Nanocatalysts for GTL, biofuels

– Hydrogen separation membranes

– H2 Storage and Electrodes for Fuel cells

Hydrogen Economy

Hydrogen EconomyGlobal Global

WarmingWarmingAir Air

PollutionPollution

Environment Environment DestructionDestruction

Economic Economic DependenceDependence

Fossil FuelEconomy

Solution

Hydrogen Separation MembranesHydrogen Separation Membranes

� Science: Carbonised template stabilizes pore structure by inhibiting silica migration, solving a major challenge in silicamembranes to maintain a robust pore structure in presence of steam (Duke, et al., Adv. Funct. Mater. 16, 1215–1220, 2006).

� Application: H2/CO2 separation for clean fuels, fuel cells feed purification.

� IP and End Users: Worldwide patentJohnson Matthey, Low Emissions Technology, FZ Julich, Germany, Stanwell

Mobility hindered and Mobility hindered and

permselectivepermselective structure structure

maintainedmaintained

Molecular Sieve Silica MembranesMolecular Sieve Silica Membranes(Effective pore diameter: 0.35(Effective pore diameter: 0.35--1nm)1nm)

uniformsolution sol xerogel

filmdensefilm

Gelation &evaporation

heat

Methyltriethoxysilane (MTES),

tetraethylorthosilicate (TEOS),

absolute ethanol (EtOH), nitric acid

(HNO3) and distilled water (H2O).

a-Alumina, 500nm,0.3

DaDa Costa, Lu and RudolphCosta, Lu and RudolphWO200193993; AU200173734; EP1299178WO200193993; AU200173734; EP1299178--

A1;JP2003534907A1;JP2003534907--W; US2004038044W; US2004038044--A1A1

Temperature (oC)

50 100 150

Flu

x (

mo

l.m

-2.s

-1)

1e-6

1e-5

1e-4

1e-3

H2 (CH

4)

H2 (CO

2)

CO2 (H2)

CH4 (H

2)

• 50/50 mixtures @ pi=50kPa• Permeation of gases in a mixture increases with temperature.

Partial Feed Pressure of gas (i) (kPa)

0 20 40 60 80 100α

i/j

0.1

1.0

10.0

100.0 H2/CH4

H2/CO2

CO2/CH4

pj/pi

J2 MSS membrane

Gas Separation MembranesGas Separation Membranes

Molecular Sieve membraneMolecular Sieve membrane

Hydrogen EconomyHydrogen Economy

US DOE US DOE FutureGenFutureGen

Hydrogen Storage Targets

• US DOE benchmarks

– 4.5 wt%, 1.2 kWh/L, and $6/kWh, by 2005

– 6.0 wt%, 1.5 kWh/L, and $4/kWh, by 2010

– 9.0 wt%, 2.7 kWh/L, and $2/kWh, by 2015

• IEA benchmark

– 5.0 wt.% and 50 kg H2/m3

MgH2 nanocomposites

Mg

Transition MetalsFe, V, Ti, Mn

Metal OxidesNb2O5 , TiO2, V2O5

Carbon NanotubesSWCNT/MWCNT

Catalysts and CNT decrease the heat of formation of (Mg,X)H2 and weaken bonding Mg-H; rate limiting: disassociation and recombination of H2, thus beneficial to have nanophased catalysts, and MgH2

Nanomaterials for H2 Storage and Fuel Cells

L. Schlapbach and A. Züttel, Nature, Vol. 414, 353-358, 2001

Ads-H2 (5-10wt%)

Developed a patented

new material with high

H2 storage capacity

and fast charging and discharging kinetics

4.5%H4.8%H1500C/60min

5.2%H5.2%H5.8%H4.7%H2000C/15min

Mg-Cata4Mg-Cata3Mg-Cata2Mg-Cata1

Salata, J Nanobiotechnology, 2004

Multifunctional Nanoparticles

LDH Nanoparticles LDH Nanoparticles � Novel technique for layered double

hydroxide (LDH) nanoparticles with good particle size and stability control ( PCT patent filed) (Xu et al, J. Am. Chem. Soc.128, 36-37, 2006).

� A world first technique in tailoring these particular nanoparticles and holds promise for efficient cellular drug and DNA delivery.

MgAl-Cl-LDH

50-100 nm

Membrane

cytoplasm

nucleus

LDH-FITC NP

Layered Double Hydroxides (LDH)

•layered structure is related to brucite (Mg(OH)2). Mg2+ is partially substituted with Al3+, resulting in a positively charged layer. Anions in the interlayer keep the charge balanced.

• Hydrotalcite: Mg3Al(OH)8(CO3)1/2 2H2O

• LDH: M2+xM

3+(OH)2(1+x)An-

1/nmH2O (x = 2-4, m = ∼2 )

Polymorphic stackingpatterns:

(a) hexagonal,

(b) rhomohedral.Mg3Al(OH)8(CO3)1/2 2H2O

Synthesis: CoSynthesis: Co--precipitation and hydrothermal precipitation and hydrothermal

refiningrefining

2Mg2+(aq) + Al3+(aq) + 6OH- + Cl- → Mg2+2Al3+(OH)6Cl (s)

Mg2+ + Al3+

solution

NaOH solution

1-10 micrometers

-2

3

8

13

18

10 100 1000 10000

Particle size (nm)

Inte

ns

ity

(%

)

100C 16 h

25C 20 m

Xu, Lu and Bartlett, JACS, 128, 36-37, 2006

Morphology

5-500 nm

30-5000 nm

MgAl-Cl-LDH

50-100 nm

100 nm

Nanoparticle Carriers for Drug and Gene Delivery

+ + + + +

+ + + + +

+

+

+

++

+

+

+

---

----

--

--

- -

-

- -

Inside

LDH particles carry positive charges overall, e.g. Mg2Al-CO3-LDH (∼100 nm) has zeta potential of +40-50 mV.

+ + + + +

+ + + + +

- - - - -

LDH-NO3

Exchange

+ + + + +

+ + + + +

LDH-DNA

LDH-FITC Transfection into Cell necleus

Membrane

cytoplasm

nucleus

LDH-FITC NP

membrane

cytoplasm

nucleus

FITC2-

O-

COO-

NCS

OO

Fluorescent Cells

Day 2, [DNA]=1.0 µg/mL. Day 3, [DNA]=1.0 µg/mL.

Mag=20 Mag=10

Design of Design of NanocapsulesNanocapsules for for

BiomoleculesBiomolecules� Science: We discovered a

new synthesis route for hollow spheres of silica with tuneable wall thickness (Djojoputro et al., J. Am. Chem. Soc. 128, 6320-6321,

2006).

� Application: Remarkable capacity to store and release drugs and enzymes

Hybrid Silica

-N+ −−−−OSi-

FC4 CTAB+ Hybrid Silica

Crystallization Extraction

VT LCT

� IP and End-Usersknow-how Novozyme, Denmark

Release of Ibuprofen from hollow and solid PMO at pH = 7.4

(a & c) FC4/CTAB ratio = 0.6,

(b & d) FC4/CTAB ratio = 1.2Djojoputro, et al. J Am Chem Soc, 128,

2006, 6321

Photocatalysis on Nanocrystalline TiO2

TiOTiO22 NanoparticlesNanoparticles

� Science: Developed a novel Fe-coated TiO2

nanoparticle by flame pyrolysis method –showing visible light photocatalysis (Teoh, Amal, Mädler, Pratsinis, Catal. Today 2006)

� Application: Water purification, Anti-bacterial,

self-cleaning surfaces.

� IP and End-Users: Provisional Patent filed.

Industrial partners: Orange County Water District Authority, USA CH2M Hill, and G. James Pty Ltd.

20 nm

Uses of Nanoparticle TiO2

A mirror coated with 8A mirror coated with 8--

10nm 10nm TitaniaTitania nanoparticlesnanoparticles

a) Without templating, and b) with PEO as template

TiOTiO22 photocatalyticphotocatalytic water purificationwater purification

0 s 15 s 1 min 0 s 15 min 1 h

Our catalystOur catalyst Degussa P25Degussa P25

Dramatically improved settling -recovery rate

Photoclean filter apparatus

Air PurificationComparison of NQ titania with Degussa P25

time (minutes)

rela

tiv

e c

on

ce

ntr

ati

on

(-)

destruction rates: NQ and P25

0 60 120 180 240 300 360 420 480 540 600 660 7200

0.2

0.4

0.6

0.8

1

NQ (formaldehyde, normalized) 8W

P25 (acetone measured) 60W

NQ (calculated) 60W

Normalised Formaldehyde reduction for Models 4 & 5, %

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200

Time (mins)

Model 4

Model 5

– Indoor (homes, buildings and

vehicles)

– VOCs, Viruses, cigarette smoke etc.

Industrial air clean-up (organics)

– Industrial emissions (styrene, paint

fumes, dioxins)

– Ventilation tunnels

AcknowledgementsAcknowledgements

•• Research associates and students:Research associates and students: Dr. Gordon Dr. Gordon XuXu, Dr , Dr ShizhangShizhang QiaoQiao, Dr X, Yao, Dr , Dr X, Yao, Dr DenisaDenisa JurcakovaJurcakova, Dr Joe , Dr Joe dadaCosta, Dr Z. Ding, Dr M. Duke, I. Costa, Dr Z. Ding, Dr M. Duke, I. KartiniKartini, Dr. S. , Dr. S. GiesslerGiessler, Dr. J. , Dr. J. BeltraminiBeltramini, Dr Z.H. Zhu, Dr B. , Dr Z.H. Zhu, Dr B. LadewigLadewig, Dr W. Hogarth, Katie , Dr W. Hogarth, Katie PorazikPorazik, Tom , Tom RuffordRufford, Tom Cheng, Melvin Lim, , Tom Cheng, Melvin Lim, AkshatAkshatTanksaleTanksale, , YunyiYunyi Wong, Wong,

•• Collaborators:Collaborators: Perry Bartlett, HM Cheng, Peter Gray, Anton Perry Bartlett, HM Cheng, Peter Gray, Anton MiddlebergMiddleberg

•• Australia Research Council (ARC large, small and SPIRT grants; Australia Research Council (ARC large, small and SPIRT grants; QEII Fellowships, Fed Fellowship)QEII Fellowships, Fed Fellowship)

•• The University of Queensland (VCThe University of Queensland (VC’’s Strategic Initiative Funds)s Strategic Initiative Funds)

•• Queensland Sustainable Energy AwardQueensland Sustainable Energy Award

•• Queensland Brian InstituteQueensland Brian Institute

•• Australian Institute of Bioengineering and Nanotech.Australian Institute of Bioengineering and Nanotech.

•• Johnson Matthey, UK and Nanoquest Pty LtdJohnson Matthey, UK and Nanoquest Pty Ltd

Recommended