Multifunctional Particles for Crystalline Colloidal Array ...nanoparticles.org/pdf/23-Asher.pdf ·...

Preview:

Citation preview

Multifunctional Particles for Multifunctional Particles for Crystalline Colloidal Array Crystalline Colloidal Array

Sophisticated Photonic Crystals Sophisticated Photonic Crystals Optical DevicesOptical Devices

Sanford A. AsherSanford A. AsherDept. of ChemistryDept. of Chemistry

University of PittsburghUniversity of PittsburghPittsburgh, PA 15260Pittsburgh, PA 15260

412412--624624--85708570asher@pitt.eduasher@pitt.edu

Sanford A. Asher, Department of Chemistry

CRYSTALLINE COLLOIDAL SELF-ASSEMBLY:

MOTIF

FOR

CREATING SUBMICRON

PERIODIC SMART MATERIALS

OutlineOutlineCCA and PCCA Photonic Crystal CCA and PCCA Photonic Crystal

FabricationFabricationSpatial Control of Electromagnetic Spatial Control of Electromagnetic

Field Maxima Ag@SiOField Maxima Ag@SiO22

Magnetically Controlled CCAMagnetically Controlled CCA–– SuperparamagneticSuperparamagnetic CCACCA–– FerrFerroomagnetic CCAmagnetic CCA☺☺ Nothing@PSNothing@PS--Hollow Sphere CCAHollow Sphere CCA

Sanford A. Asher, Department of Chemistry

Holtz, Asher et al J. Am. Chem. Soc. 1994, 116, 4497

Crystalline Colloidal Arrays Self-Assemblyfabricated from monodisperse, highly charged colloidal particles

~ 1013 spheres/cm3

spacing dependent only upon particle number density and crystalline structure

-

Dialysis /Ion Exchange Resin

Self-assembly

Crystalline Colloidal Array

FCC--

----

- --

+

-

--

---

- --

+

--

---- -- -

--

--- ---

--

--- -

-

--

---

- --

-

--

---

- --

--

---- --

++

--

-

--

--

-

---

-----

--

---

- --

--

---

- --

--

---

- --

--

---

- --

--

-

-

-

--

++

+

++ + +

+

+

+

+

++ +

+

+

+

++

+

+

+

++

+

+

++

+

+

+

+

+

+

+ +

++

+

++

+

++

+ +

--

---- --

+

++

+

--

---- --

+ +

+

++

+

+

+

+

+

+

+

+ +

++

+

+

+

++ +

+

+

+

- ---

--

--

--

---- --+

+

--

--- --+

+

--

---- --+

+

+

+--

--- --+

---

-- -- ++

+

+

+

+

+

+

+

+

++

+

+-

-

--

-+

+

+

+

+

+

-

---

----

-+

+-

- -

Preparing ~ 100 nm Polystyrene Colloids

160 ml Water 60 ml Styrene (monomer) 2.00 g MA-80-1 (surfactant) 2.90 g COPS -1 (ionic co-monomer)2.00 g Divinyl Benzene (crosslinker)0.20 g Sodium Bicarbonate (buffer)0.70 g Ammonium Persulfate (initiator)

Polymerize at 70oC for 3 hrs.

Polystyrene Colloid Synthesis:EMULSION POLYMERIZATION

TEM of polystyrene spheres

Reese, Asher et al J. Colloid Interface Sci. 2000, 232, 76

Temperature ControllerN2

N2

H2O

-

Long polymer chain

Surfactant

Water

-

--

++

+

R•

R•

What Drives CCA Self-Assembly?

Medium Dielectric Constant

re

aeeZrU

ra κκ

κε

⎥⎦

⎤⎢⎣

⎡+

=222

1)(

Interaction Potential Energy

Sphere Radius

Ionic Impurities

( )ipB

nZnTk

e+=

επκ

22 4

Particle concentration

2ar

U

r

H+ SO3-

-O3SH+

+H H+

H+

-O3S-O3S

-O3S SO3-SO3

-

SO3-

+H

+H

+H

Shear boundary

Negatively charged particle

Debye layer thickness

nmwaterpurein 700~)(1κ

Sanford A. Asher, Department of Chemistry

mλ = 2nd sin θm = order of diffraction

λ = diffracted wavelengthn = refractive index of system

d = spacing between diffracting planesθ = Bragg glancing angle

Crystalline Colloidal Array

--

---- --

--

---

- --

--

---- --

--

---

- --

--

---

- --

--

---- --

--

---- --

--

---

- ----

---

- --

--

---- --

--

---- --

--

---

- ----

---

- --

--

---

- ----

---- --

--

---

- --

--

---

- --

--

---- --

--

---- --

--

---

- --

--

---- --

--

---- --

--

---- --

--

---- --

--

---

- -- --

---- --

--

---

- --

--

---- --

--

---- --

--

---

- --

+

+

++

+

++

+

+++

+

++

++

++

++

+

+

+

+

++

+

+

+

+

+

++

+

+

+

+

+

+

+

+ + ++

++

+ +

+

++

+

+ +

d θλ

Bragg Diffraction

Diff

ract

ed In

tens

ity, I

D

500 600 700 800Wavelength / nm

d ~ 200 nm

+

- - - - --------- -- - -

-

-

---

--

- - - - ------------ -

-

-

---

--+ + +

λ0

- - - - -------------

-

-

---

--- - - - ---

--------- -

-

-

---

--

- - - - ------------ -

-

-

---

--- - - - ---

--------- -

-

-

---

--

- - - - -------------

-

-

---

--

- - - - ------------ -

-

-

---

--

- - - - -------------

-

-

---

--

- - - - -------------

-

-

---

--

- - - - ------------ -

-

-

---

--- - - - ---

--------- -

-

-

---

--

- - - - -------------

-

-

---

--

- - - - ------------ -

-

-

---

--

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

dθB

mλo = 2ndsin θ

(111) FCC CCA

λ0 = wavelength of diffracted light n = refractive index of systemd = interplanar spacing in crystalθB = Bragg glancing angle

All Light Diffracted-Finite Widths-Top Hat Profiles

Bandgap, Δλ↔Δθ

Diffraction Phenomena of Photonic Crystals

* Kinematic Diffractionx-rays: Atomic & Molecular Latticewimpy scatteringlittle attenuationeach layer contributes similarly

* Dynamical Diffractionstrong scatteringmust consider coupledincident and diffracted wave

* Theoretical Foundation Based on Work in1930-1940

W.H. Zachariasen, The Theory of X-ray Diffractionin Crystals, Wiley, 1945.

3-D Photonic Bandgap Crystals-for much larger modulations of refractive index

Dynamical Bragg Diffraction From Crystalline Colloidal Arrays, P. A. Rundquist, P. Photinos, S. Jagannathan, and S. A. Asher, J. Chem. Phys. 91, 4932-4941 (1989).

Ultra Efficient Diffraction

0 200 400 600 800 1000

0

2

4

6

8

10

-Log

T91 nm PS CCA

100 μm = 400 layers

Number of fcc (111) layers

Britney Spears Britney Spears Photonic Crystal Site

It is a little known fact, that Ms Spears is an expert in semiconductor physics. Not content with just singing and acting, she will guide you in the fundamentals of the vital laser components that have made it possible to hear her super music in a digital format.

BandgapBandgap causes standing wave where at the causes standing wave where at the edges the electric field maxima occur within edges the electric field maxima occur within

the high and low refractive index layersthe high and low refractive index layers

Low refractive index layers

High refractive index layers

Incident

Diffracted

Opportunity to spacially tune electric field maximum to

region of high optical

nonlinearities!

100 nm

The monodisperse SiO2 spheres show a homogeneous incorporation of Ag quantum dot inclusions. dsphere=78+5.4 nm, dAg=3-8 nm.

. “Photochemical Incorporation of Silver Quantum Dots in Monodisperse Silica Colloids for Photonic Crystal Applications,” W. Wang and S. A. Asher, J. Am. Chem. Soc., 123, 12528-12535 (2001).

(EtO)4Si

+ H2O +

AgNO3

SiO2

Ag QD

Ag@SiO2

A

B

C

Can Easily Vary Loading and Sizes

300 400 500 600 7000.0

0.5

1.0

1.5

2.0

(b)

(c)

(d)43

8 nm

(e)

(a)

Ext

inct

ion,

-log

(I/I 0)

Wavelength, nm

Figure 11

random dispersion in water

Refractive index matched

Ag QD Plasmon Resonance in Random Dispersion of Ag@SiO2

mλ=2ndsinθ

200 300 400 500 600 7000.0

0.5

1.0

1.5

2.0

2.5

3.0

307

nm28

8 nm

266

nm253

nm23

5 nm

220

nm21

0 nm

605

nm

565

nm

521

nm49

0 nm

457

nm

425

nm40

3 nm

Ext

inct

ion,

-log

I/I 0

Wavelength/nm

fcc CCA

Ag@SiO2 CCA Diffraction as a Function of Lattice Spacing

Plasmon Resonance

200 300 400 500 600 700 8000.00

0.25

0.50

0.75

1.00

1.25

1.50

392

nm

565

nm

490

nm

425

nm

Ext

inct

ion,

-log

I/I0

Wavelength/nm

Refractive Index Matched Random Dispersion PlasmonResonance

Dependence of Plasmon Resonance Extinction on Bragg Condition

Increased plasmonabsorption

Decreased plasmonabsorption

Electromagnetic standing wave produced by incident and diffracted light

Spatial Concentration of Electromagnetic Field

Photonic Crystal

StandingWave

Bormann Effect

200 300 400 500 6000.0

0.2

0.4

0.6

0.8

1.0

1.2

408

nm

Ext

inct

ion,

-log

I/I0

Wavelength, nm

Dependence of Plasmon Resonance Extinction on CCA Ordering

Refractive Index Matched Random Dispersion PlasmonResonance

λo/n = λinFor λ at red edge of bandgap electric field maximum occurs in water!

In water Layer

In Ag@SiO2 Layer

SiO2

Ag quantum dot

nav = ΦAg nAg + (1-Φ) nwBut on red edge of plasmonresonance nAg < 0, thus, nav < nw!

Electric Field is Localized

• Increased nonlinear optical responses• Increased linear optical responses• Recent Example: Increased Absorbance

of Dyes Towards Longer Wavelengths in Solar Cells-dramatically increased efficiencies:Tom Mallouk, Penn State

• Method for increasing refractive index contrast

Other Examples of Complex Particles

• CdS@SiO2• CdS cores within SiO2 Spheres• CdS shells around SiO2 cores• Concentric CdS and SiO2 shells• Synthesized during microemulsion

condensation of (EtO)4Si

"Preparation and Properties of Tailored Morphology, Monodisperse Colloidal Silica-Cadmium Sulfide Nanocomposites",S.-Y. Chang, L. Liu, and S. A. Asher, J. Am. Chem. Soc. 116, 6739-6744 (1994).

"Creation of Templated Complex Topological Morphologies in Colloidal Silica",S.-Y. Chang, L. Liu, and S. A. Asher, J. Am. Chem. Soc. 116, 6745-6747 (1994).

100 nm

TEM Picture of CdS@SiO2 Composite Nanoparticles

Sanford A. Asher, Department of Chemistry

Outline

• CCA and PCCA Photonic Crystal Fabrication

• Spatial Control of Electromagnetic Field Maxima Ag@SiO2

• Magnetically Controlled CCA– Superparamagnetic CCA– Ferromagnetic CCA

Sanford A. Asher, Department of Chemistry

Nothing@PSNothing@PS--Hollow Sphere CCAHollow Sphere CCA

FeCl2.4H2OFeCl3.6H2O

NH3.H2OStrong stirring Black

precipitateSonicate the precipitate in 1 M TMAOH solution

Magnetic colloid

Oleic Acid/ SDBS Sonication

Surface modified magnetic colloid

StMMA NaSSH2O

70 0CAPS5hr Emulsion

polymerization

Brown latexMagnetic separation

APS: Ammonium PersulfateMMA: Methyl MethacrylateNaSS: Sodium Styrene Sulfonate St: StyreneSDS: Sodium Dodecyl SulfonateTMAOH: Tetramethylammonium Hydroxide

Synthesis of Monodisperse Charged Superparagnetic Particles

Iron Oxide Polystyrene-iron oxide composite

~ 10 nm ~ 135 nm, polydispersity 7.5%Ferrite content 17 wt%

-50 -40 -30 -20 -10 0 10 20 30 40 50

-80

-60

-40

-20

0

20

40

60

80σ

/ em

u/g

H / KOe

nanosize iron oxidePSt-iron oxide composite particles

Magnetic Properties of Superparamagnetic Particles

Magnetic Force on a Magnetic Moment

F p H dHdx

L p H dHdx

L

F pL dHdx

F m dHdx

= + − +

=

=

( ) ( )2 2

m=pL : magnetic moment

dHdx : spatial derivative of magnetic field strength

p+p- H

---

---

----

---

-

Magnetic force at different position:Fm= (dM/dH•H+M) •dH/dL

M is the magnet moment of each particle

Repulsive force between a pair of particles, Fe=πεζ2κae-κh

ε is the dielectric constant, ζ is the zeta potential of a particle, κ is the reciprocal double-layer thickness, a is the radius of the particles, and h is the interparticle distance .

In magnetic fieldNo magnetic field

---

---

-

---

---

----

---

-

---

---

-

Part 2: Self-assembly of Superparamagnetic Particles

6 5 4 3 2 1140

160

180

200

220

240FC

C 1

11 p

lane

spa

cing

/ nm

dH/dL / KOe/cm

350 400 450 500 550 6000

2

4

6

8

10

12

14

16

L ( mm) (Left to right)2,3,4,5,6,7,8,9,10,11

Rel

ativ

e D

iffra

ctio

n In

tens

ity

wavelength (nm)

L

magnet

sampleCCD fiber

Effect of external magnetic field on lattice constantSelf-assembly of Superparamagnetic Particles

Effect of External Magnetic Field on Lattice Constant

400 500 600 700 800 9000

2

4

6

8

10

12

14

16

18 L H dH/dL primary peak mm kOe KOe/cm nm

3 3.57 4.69 850 5 2.75 3.56 866 7 2.13 2.71 871 11 1.29 1.56 888 14 0.91 1.03 899 19 0.54 0.51 904 in absence of magnet 911

Rel

ativ

e In

tens

ity (a

.u.)

Wavelength / nm

0 1 2 3 4 5

850

860

870

880

890

900

910

920

Diff

ract

ion

peak

/ nm

dH/dL / KOe/cm

L

magnet

sample

CCD fiber

Effect of external magnetic field on self-assemblyEffect of external magnetic field on self-assembly

2 4 6 8 10 121

2

3

4

5

6

7

Effective surface charge

1.5 C/cm2

1.4 1.3 1.2 magnetic force

F /

10-1

1 dyn

es

Distance from magnet / mm

Comparison of Electrostatic and Magnetic Force

Charge renormalization Zeff= Z/4

μ

deionization

NaCl added

More NaCl added

Red shift

Blue shift

Blue shift

Color Change of CCA in magnetic field

H

In magnetic field, CCA color changes with ionic strength.

Magnetic field induced assembly in NaCl solution

0 1 2 3 4

160

180

200

220

240

FCC

(111

) pla

ne s

pcai

ng /

nm

NaCl concentration / mM

350 400 450 500 550 600 650 7000

2

4

6

NaCl Concentration (From left to right)4.0mM, 2.0mM, 1.0mM, 0.67mM, 0.33 mM,0.16 mM, 0mM

Rel

ativ

e in

tens

ity

wavelength (nm)

Magnetic field induced assembly in organic polar solvents

20 30 40 50 60 70 80

140

160

180

200

220

FCC

(111

) pla

ne s

paci

ngs

/ nm

dieletric constant of medium

400 500 6000

10

20

30

40

50From left to rightEthanol, Methanol, Acetonitrile, Ethylene Glycol, DMSO, water

Rel

ativ

e In

tens

ity

wavelength (nm)

Magnetic Response of PCCA

0 30 60 90 120 150 180776

780

784

788

Remove magnetImpose magnet

Bra

gg d

iffra

ctio

n pe

ak /

nm

Time / mins

740 760 780 800 820 840 8600.0

0.3

0.6

0.9

1.2

1.5

1.8 before removing magnet

time after removing magnet (mins) 0 15 30 45 60

Rel

ativ

e re

flect

ion

Inte

nsity

Wavelength /nm

740 760 780 800 820 840 860

0.4

0.8

1.2

1.6

2.0 before imposing magnet

Time after imposing magnet (mins) 0 15 30 45 60 75

Rel

ativ

e R

efle

ctio

n In

tens

ity

Wavelength / nm

CCD

magnet

CCD

RemoveImpose

CoCl2.4H2OFeCl3.6H2O

NH3.H2OStrong stirring Black

precipitateSonicate the precipitate in 1 M TMAOH solution

Magnetic colloid

Oleic Acid/ SDBS Sonication

Surface modified magnetic colloid

StMMA NaSSH2O

70 0CAPS5hr Emulsion

polymerization

Brown latexMagnetic separation

APS: Ammonium PersulfateMMA: Methyl MethacrylateNaSS: Sodium Styrene Sulfonate St: StyreneSDS: Sodium Dodecyl SulfonateTMAOH: Tetramethylammonium Hydroxide

Synthesis of Ferromagnetic Charged Magnetic Particles

Co2

+Fe

2+

Ferromagnetic Composite Particles

~ 123 nm, ~ 14 wt% Cobalt Ferrite

-2000 -1500 -1000 -500 0 500 1000 1500 2000-1.0

-0.5

0.0

0.5

1.0

Dispersed in deionized water

Dried Powder

Red

uced

Mag

netiz

atio

n (M

/Ms)

H / Oe

Magnetic Behavior of ferromagnetic particles in powder and dispersion

H H

A B

Gold nanocrystals

External magnetic field controlled orientation of single ferromagnetic particles

Mag

netic

fiel

d H

2

H1

Incident Light

Diffractedlight

CCD

H2

H1

Incident Light

CCD

×

Diff

ract

ed L

ight

Inte

ntsi

ty

Response of ferromagnetic PCCA to oscillating magnetic field

λ= 2 n d sinθ

543.5 nm

CCD

H

CCD

+ H

- H

500 600 700 8000

2

4

6

8

10

12H /Oe

90 65553322130

Rel

ativ

e D

iffra

ctio

n In

tens

ity (a

.u.)

Wavelength /nm

External magnetic field controlled orientation of magnetic photonic crystals

H1

+ H2

- H2H1

H2

Incident Light

Diffractedlight×

0.5 1.0 1.5

1.6

2.0

2.4

2.8 1 Hz 4 HZ

Rel

ativ

e In

tens

ity /a

.u.

Time / sec

0 50 100 150 200 250 3001.5

1.8

2.1 10 Hz 60 Hz

Rel

ativ

e In

tens

ity

Time /ms

-1.0 -0.5 0.0 0.5 1.0 1.5 2.00.2

0.4

0.6

0.8

1.0

Rel

ativ

e am

plitu

de /a

.u.

log( f /Hz)

Magnetic Response Frequency Dependence of Magnetooptical Fluid

SN

Front View

SN

CCD Fiber Optic

Top View

Optical Switch Controlled by weak magnetic field

water

S NN S

500 600 700

1

2

3

4

5

6

Rel

ativ

e In

tens

ity (a

.u.)

-20 Oe -9 Oe +9 Oe +20 Oe

Rel

ativ

e In

tens

ity (a

.u.)

Wavelength /nm-120 -90 -60 -30 0 30 60 90 120

1

2

3

4

5

6

686 nm 549 nm

H / Oe

Optical Switch Fabricated with Ferromagnetic PCCA

Patterning SurfacesUsing Paramagnetic

Colloids

S. Asher, X. Xu and G. Walker, Dept. of Chemistry, University of Pittsburgh and Prof. Gary Friedman, Dept. of Electrical Engineering,Drexel University

0 5 10 15 200

2

4

6

8

10

12

14

16

18

20

-50

0

50

100

150

200

250

300

350

μm

nm

Position Defined Assembly of Ferromagnetic Particles

ys0915.018: Height

0 2 4 6 8 100

1

2

3

4

5

6

7

8

9

10

-50

0

50

100

150

200

250

300

350

Position Defined Assembly of Ferromagnetic Particles

Outline

• CCA and PCCA Photonic Crystal Fabrication

• Spatial Control of Electromagnetic Field Maxima Ag@SiO2

• Magnetically Controlled CCA– Superparamagnetic CCA– Ferromagnetic CCA

Sanford A. Asher, Department of Chemistry

Nothing@PSNothing@PS--Hollow Sphere CCAHollow Sphere CCA

Nothing@Polystyrene Spheres

• Synthesize SiO2 cores• Using emulsion polymerization synthesize

PS shell• Etch out SiO2 cores with HF• Fill Hollow Cores with reagent• Introduce Reactants in Medium to diffuse

into core and react to fill shell voids

400 600 800 10000

1

2

3

4 275 nm Silica 275/379nm Silica@PSt 379 nm Hollow PSt

Rel

ativ

e D

iffra

ctio

n In

tens

ity /a

.u.

Wavelength /nm

ferrite

Fabrication of particles with complex morphology. ~ 203 nm MPS modified silica particles A were first coated with a ~43 nm copolymer shell to give core-shell particles B (~289 nm). Particles B were further coated with a ~ 17 nm silica shell to produce particles C (~ 323 nm). Particles C were further coated with ~ an additional ~42 nm PS shell to produce composite particles D (~407 nm). When the composite particles D react with HF, polymeric particles E with concentric shells were produced. When the polymer component in the composite particles D is removed by calcination silica particles F occur

Magnetic composite particles (25 wt%) self-assemble into CCA.

1st order diffraction 1007nm, 2nd order diffraction at 511 nm

400 600 800 1000 12000

1

2

3

4E

xtin

ctio

n /a

u.

Wavelength /nm400 500 600 700 800 900

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Rel

ativ

e In

tens

ity /

au.

Wavelength /nm

Conclusions

• Possible to make complex particles • The photonic crystal structure allows

localization of electromagnetic fields on colloidal particles

• Important new phenomena• Future bright for new phenomena and new

devices

AcknowledgementsAcknowledgements

Asher Research Group Members

$: NIH, NCI, NASA and NSF

Recommended