Mr. Bentum CASIN

Preview:

Citation preview

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 1/19

1

Cas in g Des ign

1.8-1

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 2/19

2

1.8-2 Casing Design

Why Run Casing?Types of Casing Strings

Classification of CasingBurst, Collapse and TensionEffect of Axial Tension on Collapse Strength

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 3/19

3

1.8-3 Casing Design

Why run casing?

1. To prevent the hole from caving in

2. Onshore - to prevent contamination of

fresh water sands3. To prevent water migration to

producing formation

What is casing? Casing

Cement

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 4/19

4

1.8-4 Casing Design

4. To confine production to the wellbore

5. To control pressures during drilling

6. To provide an acceptable environment for subsurface equipment in producing wells

7. To enhance the probability of drilling to total

depth (TD)e.g., you need 14 ppg mud to control a lower zone,

but an upper zone will fracture at 12 lb/gal.What do you do?

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 5/19

5

1.8-5 Types of Strings of Casing

1. Drive pipe or structural pile{Gulf Coast and offshore only}

150’ -300’ below mudline .

2. Conductor string. 100’ - 1,600’ (BML)

3. Surface pipe. 2,000’ - 4,000’ (BML)

Diameter Example

16”-60” 30”

16”-48” 20”

8 5/8” -20” 13 3/8”

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 6/19

6

1.8-6 Types of Strings of Casing

4. Intermediate String

5. Production String (Csg.)

6. Liner(s)

7. Tubing String(s)

7 5/8” -13 3/8” 9 5/8”

Diameter Example

4 1/2” -9 5/8” 7”

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 7/19

7

1.8-7 Example Hole and String Sizes (in)

Structural casing

Conductor string

Surface pipe

IntermediateString

Production Liner

Hole Size30” 20”

13 3/8

9 5/8

7

Pipe Size 36” 26”

17 1/2

12 1/4

8 3/4

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 8/19

8

1.8-8 Classification of CSG.

1. Outside diameter of pipe (e.g. 9 5/8”)

2. Wall thickness (e.g. 1/2”)

3. Grade of material (e.g. N-80)

4. Type to threads and couplings (e.g. API LCSG)

5. Length of each joint (RANGE) (e.g. Range 3)

6. Nominal weight (Avg. wt/ft incl. Wt. Coupling)

(e.g. 47 lb/ft)

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 9/19

9

s e

1.8-9

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 10/19

10

1.8-10 Casing Threads and Couplings

API round threads - short { CSG }

API round thread - long { LCSG }

Buttress { BCSG }

Extreme line { XCSG }

Other …

See Halliburton Book...

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 11/19

11

Burst, Collapse, and Tension

1.9-1

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 12/19

12

1.9-2 API Design Factors (typical)

Collapse 1.125

Tension 1.8

Burst 1.1

Required

10,000 psi

100,000 lbf

10,000 psi

Design

11,250 psi

180,000 lbf

11,000 psi

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 13/19

13

Normal Pore Pressure Abnormal Pore Pressure 0.433 - 0.465 psi/ft g

p> normal

Abnormal1.9-3

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 14/19

14

1.9-4 Casing Design

Burst: Assume full reservoir pressure all along the wellbore.Collapse: Hydrostatic pressure increases with depthTension: Tensile stress due to weight of string is highest at top

STRESS

Tension

Burst

Collapse

Collapse

Tension

Depth

Burst

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 15/19

15

1.9-5 Casing Design

Unless otherwise specified in a particular problem, we shall also assume the following:

Worst Possible Conditions1. For Collapse design, assume that thecasing is empty on the inside (p = 0 psig)

2. For Burst design, assume no “backup”fluid on the outside of the casing (p = 0 psig)

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 16/19

16

1.9-6 Casing Design

Worst Possible Conditions, cont’d 3. For Tension design,

assume no buoyancy effect

4. For Collapse design,assume no buoyancy effect

The casing string must be designed to stand up to theexpected conditions in burst, collapse and tension .Above conditions are quite conservative. They are alsosimplified for easier understanding of the basic concepts.

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 17/19

17

1.9-7 Casing Design - Solution

Burst Requirements (based on the expected porepressure)

The whole casing string must be capable of withstanding this internal pressure without failing inburst.

psi600,6P

1.1* psi000,6

Factor Design* pressure poreP

B

B

D e p

t h

Pressure

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 18/19

18

1.9-8 Casing Design - Solution

Collapse RequirementsFor collapse design, we start at the bottom of the string and work our way up.

7/27/2019 Mr. Bentum CASIN

http://slidepdf.com/reader/full/mr-bentum-casin 19/19

19

1.9-9 Tension Check

The weight on the top joint of casingwould be

With a design factor of 1.8 for tension, apipe strength of

weightactual602,386

)/#5.53*631,1()/#0.47*369,6(

lbs

ft ft ft ft

requiredislbf 080,695602,386*8.1

Recommended