Motion and responses for deepwater production systems

Preview:

Citation preview

Norsk Marinteknisk Forskningsinstitutt

PEMEX‐INTSOKDeepwater Technology Seminar

Cuidad del Carmen, May 9‐10, 2013

By Petter Andreas Berthelsen

MARINTEK USA Inc

Motion and responses for deepwater production systems

Introduction

Exploration of oil and gas in deeper water in areas where the weather conditions are extreme gives several challenges that need to be solved, e.g.:

• Wave‐current interaction• Extreme waves; higher order and viscous drift forces• Large mooring line forces• Green water and wave impact• VIV

• MARINTEK has long traditions with developing methods, carrying out analyses and verification with model tests of marine structures in deep water.

About MARINTEK

MARINTEK is a contract research institute within marine technology.

MARINTEK carries out contract R&D for marine related industries:• Maritime• Oil and Gas• Ocean Energy

Main Research areas are:• Hydrodynamics and structures• Energy and machinery technology• Operations technology

4

MARINTEKNorwegian Marine Technology Research Institute

Main office in Trondheim, NorwayOffices in Oslo and BergenSubsidiary in Houston; MARINTEK (USA), Inc.Subsidiary in Rio de Janeiro; MARINTEK do Brasil, Ltda.

Marine Technology Centre, Trondheim

Rio de Janeiro

MARINTEK do Brasil, Ltda.

Houston

MARINTEK (USA), Inc.

Trondheim

OsloBergen

Ocean Basin Laboratory (80x50x10 m)

MARINTEK operates national marine technology  laboratories

6

Model tests in the Ocean Basin

Ocean Basin model test

Typical test set‐up:•Measurement of:

− 6 DoF motions by use of optical position meas. system

− Mooring line and riser forces− Relative wave elevation close to structure− Impact loads

•Observation (by video):− Green water− Motions of mooring lines and risers (by 

underwater video)

Challenge:Deepwater system design verification by model tests

Ocean Basin 10m deepModel scale 1:150

Example: FPSO 3000 m water depth

Hydrodynamic loads not directly influenced by mooring/riser system

Can truncate mooring/risersto obtain hydrodynamic characteristics of floater

Truncation of mooring and riser system

• Truncated system should maintain the same hydrodynamic characteristics of the floater as the full depth system

• It is required that the responses measured with the truncated system can be reproduced by a coupled simulation model

− This numerical model will be used to obtain design values for the full depth system 

=> Hybrid verification procedure

Hybrid verification procedure

Full depth and truncated mooring systems (VERIDEEP)

Quasi‐static characteristics comparison

Restoring force and single line Surge vs pitch

Comparison of dynamic line forces (VERIDEEP)Reduced depth Full depth

An active hybrid decomposed mooring system (HydeMoor) for model testing of deepwater offshore platforms

To be presented at OMAE2013, Nantes, France

From laboratories to numerical simulation tools

MARINTEK analysis tools

• SIMO  – Simulation of rigid multibody system

• RIFLEX – Global analysis of risers, mooring, umbilicals

• MIMOSA – Mooring analysis

• SIMLA – Simulation of Pipe laying

• BFLEX – Local analysis of flexible risers• UFLEX – Local analysis of complex risers

• MULDIF 2 – Next generation potential flow solver

• SIMA – Graphical user interface

Example: Disconnected turret buoy system

• Coupled time domain analysis− Turret buoy 6DOF rigid body− Riser: FEM with pipe‐in‐pipe inside bellmouth− Umbilicial: FEM

17

Example: Disconnected turret buoy system

Visualization: SimVis

18

Example: Hybrid Risers/Disconnectable Turret/FPSO System

Visualization: SimVis

19

Example: Hybrid Risers/Disconnectable Turret/FPSO System

Visualization: SimVis

Example: Turret Disconnection

20

Visualization: SimVis

21

Wave current interactions: Mooring line forces

6800 kN

4500 kN

Difference is larger than the line force from the current alone

Wave current interactions: Air gap

Increased wave amplification around semi columns with current present (MULDIF‐1, Zhang et al., 2007)

MULDIF‐2 Development

• Internal development at MARINTEK throughout 5 years

• Industry code implementation performed as a JIP− Present participants: Statoil, Aker Solutions, NOV‐APL, Rolls‐Royce Marine, DNV, MARINTEK

• Overall objective to develop a hydrodynamic potential theory code that handles various problems not handled well by excisting industry codes

− Effect from wave‐current interaction− Significant wave drift forces => large mooring and thrust forces− Airgap (increased  wave amplification)

− It needs to be user friendly, robust and well validated

• Phase 1 (2010‐2013)− Focus on wave‐current interactions for single problems in deep and finite water depths

• Phase 2 (2013‐2015 plans)− Focus on semi‐empirical practical nonlinear corrections for higher sea states and for viscous effects − Multibody with current

SIMA – MARINTEK Workbench

• Developed in a JIP between MARINTEK and Statoil ASA. • The main simulation programs presently available through the SIMA interface are: 

− SIMO− RIFLEX− SIMO/RIFLEX coupled analysis

• Future support− SIMLA− MULDIF2

• Purpose:− Make the task of setting up a 

simulation model of a dynamic system easier and faster.

− Visualize everything− Workbench that presents the user 

with a common interface no matter which simulation software is used.

24

Thank you!

25

COUPLED ANALYSIS APPROACH

• Time domain finite element model (e.g. RIFLEX‐C:  SIMO + RIFLEX)

All interaction effects between mooring/risers and vessel are modelled directly

WIND

WAVES

CURRENT

Recommended