Modeling of a Simple Pendulum

Preview:

DESCRIPTION

modelling of simple pendulum

Citation preview

  • ModelingofaSimplePendulum

    SimpleLinearModel:

    Thesimplestanalyticalmodelforastandardpendulumcanbederivedbyassumingnodrag forceand smallvariations in theangleof thependulum.Assume that theentiremassof thependulum is concentrated in theboband that the length from thepivotpointtothecenterofgravityofthebobisgivenby.

    FindthesumofthemomentsaroundthepointOtakingthecounterclockwisedirectionaspositive.Notethatthetension,,inthethinroddoesnotcontributetothemomentaboutthepointO.

    0

    0

    Themassmomentofinertiaofthependulum,,isgivenby:

  • Theangularaccelerationofthependulum,,isthesecondderivativeoftheangle.

    Thedifferentialequationgoverningthedynamicsofthependulumbecomes:

    0

    Dividing throughby and rearranging termsyields the following secondorderdifferentialequation:

    0

    Although this equation appears simple enough, it is nonlinear in nature due to thepresence of a transcendental function. This nonlinear equation can, however, belinearizedbyassumingsmallvariationsintheangleofthependulum,.

    Forsmallangles(expressedinradians),isapproximatelyequalto.Forexample:

    22.5 0.3927 , 0.3827

    Therefore for small variations in angle, the lineardifferentialequationdescribing thedynamicsofasimplependulumcanbeapproximatedby:

    0

    ThisequationcanbesolvedanalyticallybyconsideringthebasicpropertiesofLaplacetransforms. Recall that the second derivative of a function can be expressed in theLaplacedomainasfollows:

    0 0

    Thedifferentialequationdescribingthedynamicsofthependulumbecomes:

    0

  • Assume that thependulum is released from some initial angle, ,no initial velocity( 0).

    0

    Solvingforyields:

    ThiscaneasilybeputintotheformofthefollowingbasicLaplacetransform:

    Theangleof thependulum, ,asa functionof timebasedona simple, linearmodelbecomes:

    Although it is not necessary to use MatlabSimulink to visualize this function, forcomparisonpurposestheSImulinkmodelbecomes:

  • SimpleNonLinearModel:

    Althoughfindingananalyticalsolutiontothesimplenonlinearmodelisnotevident,itcanbesolvednumericallywiththeaidofMatlabSimulink.Startbyisolatingthehighestorderderivativefromthelinearmodel:

    0

    TheMatlabSimulinkmodelthatsolvesthisequationisgivenby:

  • NonLinearModelIncludingaConstantAerodynamicDragForce:

    Assumethattheaerodynamicdragactsonlyonthebob;i.e.,thedragonthethinrodisnegligible.Thedragforce,,imposesanadditionalmomentaboutthepointO.

    Thedifferentialequationgoverningthedynamicsofthependulumbecomes:

    0

    Isolatingthehighestorderderivativeofyields:

    1

    TheMatlabSimulinkmodelthatsolvesthisequationisgivenby:

    Note that the drag force must change sign based on the angular velocity of thependulum.Inotherwords,althoughthedragforceistakenasconstant,itmustalwaysactoppositetothedirectionofmotion.

  • NonLinearModelIncludingAerodynamicDragForcethatisafunctionofVelocity:

    Theaerodynamicdragforincompressibleflowoveranybodyisgivenby:

    12

    whereisthevelocityoftheincompressiblefluid,isthedensityofthefluid,isthefrontalarea(note:notthesurfacearea),andisthedragcoefficient.

    ThedragcoefficientforacylindricalbodyisafunctionoftheReynoldsnumberasshowninthefigureonthefollowingpage.

    RecallthattheReynoldsnumberisgivenby:

    whereisthediameterofthecylinderandistheviscosityoftheincompressiblefluid(inthiscaseair).

  • TbheMatlabSy:

    Simulinkmoodel for thependulumwwithvariableeaerodynam

    micdrag isggiven

  • NonLinearModelIncludingVariableAerodynamicDragandFrictionatthePivot:

    Therecouldpotentiallybeasignificantamountoffrictionatthepivotpoint. TheMatlabSimulinkmodel including aerodynamic drag and Coulomb friction at the

    pivotpointisgivenby:

  • Theresponseofthesystembasedonaninitialpendulumangleof22.5degreesisillustratedbelow.

    Thefollowingtablesummarizestheparametersusedinthesimulation:

    T0 = 22.5*pi/180; %% Initial pendulum angle (radians) L = 0.6; %% Length of rod (distance to CG) (m) g = 9.81; %% Acceleration due to gravity (m/s^2) M = 0.06; %% Mass of bob (kg) FD = 0.0007; %% Drag Force (N) DB = 0.0333; %% Diameter of bob (m) HB = 0.0508; %% Height of bob (m) A = DB*HB; %% Frontal area of bob (m^3) RHO = 1.23; %% Density of air (kg/m^2) MEW = 1.79E-5; %% Viscosity of air (kg/(m s)) CD = 1; %% Drag Coefficient KD = 0.5*CD*A*RHO; %% Drag constant (kg/m) TFF = 0.0005; %% Friction torque at pivot (N-m)

Recommended