modeling and applications OF swot satellite data

Preview:

DESCRIPTION

modeling and applications OF swot satellite data . C. Lion 1 , K.M. Andreadis 2 , R. Fjørtoft 3 , F. Lyard 4 , N. Pourthie 3 , J.-F. Crétaux 1 1 LEGOS/CNES, 2 Ohio State University/JPL 3 CNES, 4 LEGOS/CNRS. 1. SWOT mission. NASA and CNES, launch in 2019 - PowerPoint PPT Presentation

Citation preview

MODELING AND APPLICATIONS OF SWOT SATELLITE DATA

C. Lion1, K.M. Andreadis2, R. Fjørtoft3,F. Lyard4, N. Pourthie3, J.-F. Crétaux1

1LEGOS/CNES, 2Ohio State University/JPL3CNES, 4LEGOS/CNRS

970

km

SWOT mission• NASA and CNES, launch in 2019• 970km orbit, 78°inclination, 22 days repeat• KaRIN: InSAR Ka band• Wide swath altimeter

• Ocean: “Low resolution” meso-scale and submeso-scalephenomena (10km and greater)

• Hydrology: “High resolution”surface area above (250m)² rivers above 100m

1

Preparing the mission for hydrology

2. SAR amplitude image: Rhone river, France CNES/ Altamira information simulator

1. Radar cross section CNES/ CAP Gemini simulator

Modelisation and simulation for technical use

2

Goals• Need for a simulator for scientific users (hydrology)– “Fast”: 3 months 3min– Easy to use: no need for heavy preparation of input data– Portable– Relatively realistic errors

• Targets: deltas, rivers, lakes…

• Output: water elevation

3

Simulator output: water heightThe Amazon river, Brazil

Simulator principle• Based on works of:

S. Biancamaria and M. Durand: swath calculation, principleV. Enjolras: residual error calculation

4

Simulator principle• Based on works of:

S. Biancamaria and M. Durand: swath calculation, principleV. Enjolras: residual error calculation

5

Simulator principle• Based on works of:

S. Biancamaria and M. Durand: swath calculation, principleV. Enjolras: residual error calculation

6

Residual height errors

Taken into account• Roll• Baseline variation• Thermal noise• Geometric

decorrelation• BAQ noise• Satellite position

Not taken into account yet• Troposphere• Layover• Shadow• Processing (classification…)• ….

7

Residual height errors: Roll

• Roll

8

H

h

B a

ir1r2

R

Residual height errors

• Baseline

9

H

h

B

ir1r2

R

E_b

Residual height errors

• Coherence loss

g = gSNR + gSQRN + gg

N number of looks

10

H

h

B

ir1r2

R

Simulator principle• Based on works of:

S. Biancamaria and M. Durand: swath calculation, principleV. Enjolras: residual error calculation

11

Simulator principle• Based on works of:

S. Biancamaria and M. Durand: swath calculation, principleV. Enjolras: residual error calculation

12

m

Simulator principle• Based on works of:

S. Biancamaria and M. Durand: swath calculation, principleV. Enjolras: residual error calculation

13

Simulation: Ohio River

Input: Model LisFLOODReference water height (m)

Output: Water height observed by SWOT (m)

3 months modelization courtesy: K. Andreadis

40.5

40

39.5

39

38.5

40.5

40

39.5

39

38.5

Latit

ude

Latit

ude

275 276 277 278 279 275 276 277 278 279Longitude Longitude

14

Assimilation methodology• Assimilating SWOT

observations in a identical twin synthetic experiment

• Ohio River study domain (only main stem)

• LISFLOOD hydraulic model• Ensemble Kalman filter• Errors introduced to boundary inflows, channel width,

depth and roughness• Observation errors from a Gaussian distribution

N(0,5cm)

15

courtesy: K. Andreadis

Assimilation results• Water surface elevation along the river channel at two SWOT

overpass times

208 Hours 280 Hours

• Information is not always propagated down/up stream• Small ensemble size could partly be the reason

16

courtesy: K. Andreadis

Conclusions• Simulation of SWOT data with more representative errors

• The simulator is more user friendly: output format as input format, GUI, can be used with several models

• Can be used for assimilations studies (estimate indirect valuables)

• Need to improve the simulator: layover, decorrelation due to vegetation, troposphere …

17

Thank for your attention

Recommended