MET Manufacturing - Indiana University Bloomingtonmet33800/2_Chapter_20/Chapter_20.pdfProcesses in...

Preview:

Citation preview

1

Before you begin: Turn on the sound on your computer. There is audio to accompany this presentation.

MET 33800 Manufacturing Processes

Chapter 20

Fundamentals of Machining

MET 33800 Manufacturing Processes

Chapter 20

Fundamentals of Machining

Unless otherwise indicated, illustrations in this presentation are taken from the 11th Edition of Degarmo’s Materials and Processes in Manufacturing textbook by J.T. Black and Ronald A. Kohser, ©2012, Wiley.

Materials Processing

Chapters 15-17

Chapters 30-33

Chapters 20-27

Chapters 11-13

Chapter 20 ‐ 3

Page 268 Figure 11‐1, The Five materials processing families with subgroups and typical processes

2

Introduction

Machining Process of removing unwanted material in the form of chips.

Metal Cutting (Removal)Machining when material is metallic.

Fundamentals of Machining/ Orthogonal Machining

Chapter 20 ‐ 4

http://crawfordpublications.com/wp‐content/uploads/2013/11/Metalworking‐picture.png

FundamentalsMachining is a complex process

Input variables:

Machine Tool Selection

Cutting Tool Selection

Properties of the Workpiece

Cutting Parameters

Workholding Device

Chapter 20 ‐ 5

Chapter 20 ‐ 6

3

Basic Chip Formation Processes

Turning (chapter 22) 

Drilling (chapter 23) 

Milling (chapter 24)

Shaping (chapter 25)

Sawing (chapter 25)

Broaching (chapter 25)

Grinding (chapter 26)

Fundamentals

Chapter 20 ‐ 7

Figure 20‐2, Page 535

FundamentalsGenerate Flat Surfaces

Chapter 20 ‐ 8

Generate Cylindrical Surfaces

Chapter 20 ‐ 9

4

Definitions

Machine Tool ‐ Supplies power and support of the workholding device and cutting tool.

Workholding Device ‐ Can be stationary or rotating. (chapter 27)

Cutting Tool ‐ Can be stationary or rotating. (chapter 21)

Tool Holder ‐ Supports tool. Strength and accuracy critical for success of process.

Chapter 20 ‐ 10

Chip Formation ParametersDepth of Cut (d)

Depth of cutting tool in workpiece.

Equation for turning  initial diameter1 and  

final diameter2

1 2D - Dd =

2

Chapter 20 ‐ 11

1 2D - Dd =

2

Chapter 20 ‐ 12

Figure 20‐12, Page 545

5

d = tool width2 1D - Dd =

2

Chapter 20 ‐ 13

Machining Parameter Reference Handbooks

Chapter 20 ‐ 14

Machining Parameter Reference

Chapter 20 ‐ 15

6

Chip Formation ParametersCutting Speed (V)

For turning, relates velocity of rotating workpiece to stationary tool. Common units:  

surface feet/min (sfpm or fpm)

meters/min (m/min)

Less common units:

inches/min (ipm)

meters/sec (m/s)

Chapter 20 ‐ 16

Chapter 20 ‐ 17Figure 20‐12, Page 545

Machining Parameter Reference

Chapter 20 ‐ 18

7

Chip Formation ParametersSpindle Speed (Ns)

Calculated by cutting speed (V) and part/tool size (D).

Equation for turning  initial diameter1

D N1 sV = 12

12 V

N = s D

1

Chapter 20 ‐ 19

12 V

N = s D

1

Chapter 20 ‐ 20Figure 20‐12, Page 545

12 V

N = s D

1

Chapter 20 ‐ 21

8

Chip Formation Parameters Feed (fr) – Amount of material removed per 

revolution of the tool (turning). 

Units = inches per revolution (ipr) 

Feed (ft) – Amount of material removed per individual tool tooth (milling).

Units = inches per tooth (ipt)

Feed (fm) – Table movement rate (milling).

Units = inches per minute (ipm)

Chapter 20 ‐ 22

Chapter 20 ‐ 23Figure 20‐12, Page 545

Chip Formation ParametersFeed (fm) 

Table movement rate (milling). 

where: n = number of teeth

Ns = spindle rpm

m t sf = f n N

Chapter 20 ‐ 24

9

Machining Parameter Reference

Chapter 20 ‐ 25

Chip Formation Parameters

Material Removal Rate (MRR)

Volume of material removed (in3/min).

Equation for turning

r MRR 12 V f d

Chapter 20 ‐ 26

Chip Formation ParametersCutting Time (Tm)

Function of the length of cut (L) and tool approach and/or over travel allowance/clearance (LA and LO).

Equation for turning a diameter.

For cutting to a shoulder Lo = 0.

A O

m

L + L + LT =

f Nr s

Chapter 20 ‐ 27

10

Chapter 20 ‐ 28

Chip Formation Parameters

Parameters – Other Processes

Chapter 20 ‐ 29

Parameters – Other Processes

Chapter 20 ‐ 30

11

Parameters – Other Processes

Chapter 20 ‐ 31

Example Problem

Material: 1020 Hot Rolled Carbon Steel (200 HB) 1.00 diameter bar.

Process: Turn to 0.78 dia x 4.00 length

Tool: Brazed uncoated carbide single‐point

Determine the Machining Parameters

Chapter 20 ‐ 32

1 2D ‐ D 1.00 ‐ 0.78

d =   =   = 0.1102 2

Chapter 20 ‐ 33

Example Problem

Figure 20‐12, Page 545

12

Chapter 20 ‐ 34

Example Problem ‐ SolutionDetermine the Machining Parameters

Chapter 20 ‐ 35

Example Problem ‐ SolutionDetermine the Machining Parameters

Chapter 20 ‐ 36

13

Energy and Power in MachiningOblique cutting force components:

FC Primary (largest) cutter force in direction of cutting velocity. Requires 99% of total power.

FF Feed force that amounts to ~50% of FC and requires negligible power

FR Radial force that amounts to ~50% of FC and requires negligible power

Chapter 20 ‐ 37

Energy and Power in Machining

Chapter 20 ‐ 38Figure 20‐12, Page 545

Energy and Power in Machining

Chapter 20 ‐ 39

Figure 20‐12, Page 545

14

Energy and Power in Machining

Chapter 20 ‐ 40Figure 20‐12, Page 545

cF VHP =

33,000

Energy and Power in Machining

Horsepower (HP)

Power at the machine spindle can be approximated by:

Chapter 20 ‐ 41

Specific Horsepower (HPs)

Relates spindle horsepower and MRR:

s

HPHP =

MRR

Energy and Power in Machining

Chapter 20 ‐ 42

15

Chapter 20 ‐ 43

Motor Horsepower (HPm)

Includes machine efficiency (E) and correction factor (CF) for tool wear and variation in cutting speed:

sm

HP × MRR × CFHP =

E

Typical value of E = 0.80

Energy and Power in Machining

Chapter 20 ‐ 44

Feed Correction Factor (CF) Table

Energy and Power in Machining

Chapter 20 ‐ 45

MAXIMIZING SURFCAM, S.C. Jonathon Lin and Behrooz Lahidji, Scholars International Publishing Corp., ©1997.

16

Cutting Force 

Cutting Force (FC)

Can be estimated using MRR, HPs and V:

s

C

H P ×  M RR  ×  33 ,000F    

V

Chapter 20 ‐ 46

c

s

F  V HPHP =     and   HP  = 

33,000 MRR

Example Problem Revisited

Material: 1020 Carbon Steel 200 HB

Geometry: 1.00 diameter bar

Process: Turn to 0.78 dia x 4.00 length

Tool: Brazed uncoated carbide

Determine Power and Force Parameters

Chapter 20 ‐ 47

Chapter 20 ‐ 48

MAXIMIZING SURFCAM, S.C. Jonathon Lin and Behrooz Lahidji, Scholars International Publishing Corp., ©1997.

17

Example Problem ‐ SolutionDetermine Power and Force Parameters

Chapter 20 ‐ 49

Cutting Force 

Cutting Force (FC)

Maximum depth of cut can be estimated using the motor horsepower equation:

m

max

s r

HP Ed

12 HP V f CF

Chapter 20 ‐ 50

Chip Formation ProcessesOrthogonal Machining

Cutter motion and cutter edge are  perpendicular.

Oblique Machining

Cutter motion and cutter edge not perpendicular. Includes shaping, drilling and single point turning.

Chapter 20 ‐ 51http://image.slidesharecdn.com/theory‐of‐metal‐cutting‐120730021018‐phpapp01/95/theory‐ofmetalcutting‐56‐728.jpg?cb=1343614427

18

Oblique tool geometry (3‐D) is simplified to 2‐D geometry to allow simple representation of the cutting process.

Orthogonal Machining 

Chapter 20 ‐ 52

Orthogonal Machining 

Methods for Orthogonal Machining Force Measurement 

Chapter 20 ‐ 53

Chip is formed by a localized shear process over a narrow region.

Large‐strain, high‐strain‐rate plastic deformation work hardens material.

When work hardening reaches saturated condition, shearing occurs.

Orthogonal Machining 

Chapter 20 ‐ 54

19

Orthogonal Machining 

Chapter 20 ‐ 55

Parameters:

V = tool velocity

t = uncut chip thickness

w = width of chip 

= back rake angle

= shear plane angle

ψ =  shear lamella (microscopic shear planes) angle

Orthogonal Machining 

Chapter 20 ‐ 56

Chip Types:

1. Continuous  highly ductile materials.

2. Continuous w/built‐up edge material adhering to tool.

3. Discontinuous  low ductility materials.

Chip Formation Process

Chapter 20 ‐ 57

http://www.goesslingusa.com/wp‐content/uploads/2013/08/Metal‐Chips‐1.jpg

20

Discontinuous

Continuous

Continuous w/Built‐Up EdgeChapter 20 ‐ 58

Major Heat Sources

1. Shear Process major heat source.

2. Tool‐Chip Interface  heat from friction.

3. Tool Flank  heat from friction.

Amount of heat affects tool selection.

Control of heat critical tool life.

Heat and Temperature

Chapter 20 ‐ 59

http://192.163.250.149/~kennamet/wp‐content/uploads/2011/08/8488416‐13362247‐thumbnail.jpg

Heat and Temperature

Chapter 20 ‐ 60

Reference: Page 511 Materials and Processes in Manufacturing, 9th Edition, Degarmo, Black and Kohser, Wiley 

21

Heat and Temperature

Chapter 20 ‐ 61

Reference: Figure 21‐30 Page 510 Materials and Processes in Manufacturing, 9th Edition, Degarmo, Black and Kohser, Wiley 

Heat and Temperature

Chapter 20 ‐ 62

Reference: Figure 21‐32 Page 511 Materials and Processes in Manufacturing, 9th Edition, Degarmo, Black and Kohser, Wiley 

High‐strength materials compared to low‐strength materials require higher cutting forces  greater tool deflection, greater work deflection, increased friction (heat), increased heat generation (shear) and greater power.

Highly ductile materials compared to low ductility materials permit extensive plastic deformation increased heat generation, increased friction (heat) and greater power.

Chip Formation Processes

Chapter 20 ‐ 63

22

Machining is a dynamic process.

High strain and strain rates.

Closed‐loop interactive process:

Initial chip load on tool.

Chip load determines forces.

Forces produce deflection and alter chip load on tool.

Altered chip load determines new forces.

Force‐displacement response repeats.

Result can be vibration or chatter.

Vibration and Chatter

Chapter 20 ‐ 64

Vibration and Chatter

Chapter 20 ‐ 65

Vibration and Chatter

Chapter 20 ‐ 66

23

Dynamic Stability Factors:

Cutting process parameters (d, V, fr).

Cutter geometry (rake angles, shape).

Characteristics of the machining process (tooling, machine tool, fixture, work).

Cutting Stiffness (Ks) of the work material.

Vibration and Chatter

Chapter 20 ‐ 67

Cutting Stiffness (Ks)

Cutting Stiffness (Ks) can be equated to Specific Energy (U).

Cutting Stiffness is critical for chatter and vibration.

Cutting Stiffness is a material property.

Cutting Stiffness

Chapter 20 ‐ 68

Cutting Stiffness

Chapter 20 ‐ 69

24

Factors Affecting Chatter:

Higher Cutting Stiffness (Ks) requires more force and results in less stability.

Rotation Speed (Ns ) affects the phase shift between overlapping surfaces and the possible regeneration of vibration. Generally as speed increases chatter becomes more significant. 

Increasing Feed Rates (Ft ) has a relatively small effect on chatter but does affect vibration which can affect chatter. 

continued on next slide

Vibration and Chatter

Chapter 20 ‐ 70

Factors Affecting Chatter (continued):

Increasing the Depth of Cut (d) has the largest effect on increasing chatter due to the higher cutting forces required.

The Total Width of Chip is based on the depth of cut times the number of cutting edges. Increasing the total width of chip increases the cutting force and possibility of chatter. 

Increasing the Back Rake Angle reduces the cutting force (Fc) which generally decreases chatter.

continued on next slide

Vibration and Chatter

Chapter 20 ‐ 71

Factors Affecting Chatter (continued):

Reducing Tool Clearance Angles increases friction between the tool and workpiece. Increased friction can have the affect of process damping which generally decreases chatter. However, additional heat is created which can thermally distort the work and increase the tool wear.

Cutting Tool Geometry including nose radius, shape and lead angle influence chip area which affects chatter. 

Vibration and Chatter

Chapter 20 ‐ 72

25

The End – See Oncourse for Videos

Chapter 20 ‐ 73

http://www.machineryscans.com/logo%202.jpg

Recommended