Max Planck SocietyIntroduction Integrand reduction [Mastrolia, EM, Ossola, Peraro arXiv:1205.7087,...

Preview:

Citation preview

Integrand reduction via

multivariate polynomial division

EDOARDO MIRABELLA

in collaboration with P. Mastrolia, G. Ossola, T. Peraro & U. Schubert

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.1/17

Outline

Introduction

Integrand reduction @ one loop

Integrand reduction @ many loops

multivariate polynomial division

maximum cut theorem

Applications

Conclusions

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.2/17

Introduction

Integrand reduction[Mastrolia, EM, Ossola, Peraro arXiv:1205.7087, arXiv:1209.4319]

extensively used @ one loop see Luisoni’s talkextremely efficient

easy-to-implement (e.g. CutTools & Samurai )

its multi-loop extensioninteresting & lively field [ Mastrolia, Ossola,’11; Badger, Frellersvig, Zhang ’12; Zhang ’12;

with Mastrolia, Ossola, EM, Peraro ’12; Kleiss, Malamos, Papadopoulos, Verheyen ’12;with Badger, Frellersvig, Zhang ’12; Feng, Huang ’12; Mastrolia, Ossola, EM, Peraro ’12;with Huang, Zhang; ’13 ]

takes a different perspective see also Badger’s & Feng’s talk

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.3/17

Introduction

Integrand reduction via multivariate polynomial division[Mastrolia, EM, Ossola, Peraro arXiv:1205.7087, arXiv:1209.4319]

applicable to any amplitude at any order

leads to new insight on amplitudesinformation on the structure of the residues

re-interpretation of the one loop results

generates recursively the residue of any cutone ingredient: Feynman denominators

one operation: polynomial division

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.3/17

Introduction

Integrand reduction via multivariate polynomial division[Mastrolia, EM, Ossola, Peraro arXiv:1205.7087, arXiv:1209.4319]

applicable to any amplitude at any order

leads to new insight on amplitudesinformation on the structure of the residues

re-interpretation of the one loop results

generates recursively the residue of any cutone ingredient: Feynman denominators

one operation: polynomial division

Alternative approach: Maximal Unitarity [Kosower, Larsen ’11; Larsen ’12; Larsen, Caron-Huot ’12

Johansson, Kosower, Larsen ’12]

see Kosower’s talk

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.3/17

Integrand reduction @ one loop

One loop amplitude

A =

∫ddk I I =

N

D0 · · ·Dn−1aaaaaaaaaaaaaaaaaaaaa

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.4/17

Integrand reduction @ one loop

One loop amplitude

A =

∫ddk I I =

N

D0 · · ·Dn−1aaaaaaaaaaaaaaaaaaaaa

the multipole decomposition in 4 dimensions: [Ossola, Papadopoulos, Pittau ’07]

N (k)D0 · · ·Dn−1

=∑ijkℓ

∆ijkℓ

DiDjDkDℓ

+∑ijk

∆ijk

DiDjDk

+∑ij

∆ij

DiDj

+∑i

∆i

Di

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.4/17

Integrand reduction @ one loop

One loop amplitude

A =

∫ddk I I =

N

D0 · · ·Dn−1aaaaaaaaaaaaaaaaaaaaa

the multipole decomposition in 4 dimensions: [Ossola, Papadopoulos, Pittau ’07]

N (k)D0 · · ·Dn−1

=∑ijkℓ

∆ijkℓ

DiDjDkDℓ

+∑ijk

∆ijk

DiDjDk

+∑ij

∆ij

DiDj

+∑i

∆i

Di

∆’s : (known) functions of (unknown) coefficients

N : process-dependent numerator function

Di’s: denominators

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.4/17

Integrand reduction @ one loop

One loop amplitude

A =

∫ddk I I =

N

D0 · · ·Dn−1aaaaaaaaaaaaaaaaaaaaa

the multipole decomposition in 4 dimensions: [Ossola, Papadopoulos, Pittau ’07]

N (k)D0 · · ·Dn−1

=∑ijkℓ

∆ijkℓ

DiDjDkDℓ

+∑ijk

∆ijk

DiDjDk

+∑ij

∆ij

DiDj

+∑i

∆i

Di

∆’s : (known) functions of (unknown) coefficients

N : process-dependent numerator function

Di’s: denominators

∆ij··· computed by sampling N . . .

. . . on the solutions of the multiple cut Di = Dj = · · · = 0

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.4/17

Our idea

This Talk: Efficient computation of the residues at any loop

N (k1, . . . , kℓ)

D0(k1, . . . kℓ) · · ·Dn−1(k1, . . . , kℓ)=

∑κ

∑i1···iκ

∆i1···iκ(k1, . . . , kℓ)

Di1(k1, . . . , kℓ) · · ·Diκ(k1, . . . , kℓ)

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.5/17

Our idea

This Talk: Efficient computation of the residues at any loop

The Idea: in principle is simple, e.g. at one loop

N (k)D0D1D2D3

=∆0123(k)

D0D1D2D3+ · · ·

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.5/17

Our idea

This Talk: Efficient computation of the residues at any loop

The Idea: in principle is simple, e.g. at one loop

N (k)D0D1D2D3

=∆0123(k)

D0D1D2D3+ · · ·

0. Decompose kµ =∑4

i=1 xi eµi and z ≡ (x1, x2, x3, x4)

1. Write N as∑3

j=0 Fj(k)Dj(k) +R(k)q: is it possible? a: Gröbner basis

+ multivariate polynomial division

2. If R(k) = 0 discard it . . .i.e. M∈ the ideal of the Di’s

s2

3. . . . otherwise ∆0123 = R(k)q: how to do that?

a: basis in a polynomial space

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.5/17

Our idea

This Talk: Efficient computation of the residues at any loop

The Idea: in principle is simple, e.g. at one loop

N (k)D0D1D2D3

=∆0123(k)

D0D1D2D3+ · · ·

0. Decompose kµ =∑4

i=1 xi eµi and z ≡ (x1, x2, x3, x4)

1. Write N as∑3

j=0 Fj(k)Dj(k) +R(k)q: is it possible? a: Gröbner basis

+ multivariate polynomial division

2. If R(k) = 0 discard it . . .i.e. N ∈ the ideal of the Di’s

s2

3. . . . otherwise ∆0123 = R(k)i.e. R ∈

(polynomial space)/(the ideal of the Di’s)

Fundamental question arises . . .

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.5/17

Our idea

This Talk: Efficient computation of the residues at any loop

The Idea: in principle is simple, e.g. at one loop

N (k)D0D1D2D3

=∆0123(k)

D0D1D2D3+ · · ·

0. Decompose kµ =∑4

i=1 xi eµi and z ≡ (x1, x2, x3, x4)

1. Write N as∑3

j=0 Fj(k)Dj(k) +R(k)q: is it possible? a: Gröbner basis

+ multivariate polynomial division

2. If R(k) = 0 discard it . . .i.e. N ∈ the ideal of the Di’s

s2

3. . . . otherwise ∆0123 = R(k)i.e. ∆0123 ∈

(polynomial space)/(the ideal of the Di’s)

Fundamental question arises . . .

answered moving to polynomials . . .

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.5/17

Our idea

This Talk: Efficient computation of the residues at any loop

The Idea: in principle is simple, e.g. at one loop

N (k)D0D1D2D3

=∆0123(k)

D0D1D2D3+ · · ·

0. Decompose kµ =∑4

i=1 xi eµi and z ≡ (x1, x2, x3, x4)

1. Write N as∑3

j=0 Fj(k)Dj(k) +R(k)q: is it possible? a: Gröbner basis

+ multivariate polynomial division

2. If R(k) = 0 discard it . . .i.e. N ∈ the ideal of the Di’s

s2

3. . . . otherwise ∆0123 = R(k)i.e. ∆0123 ∈

(polynomial space)/(the ideal of the Di’s)

Fundamental question arises . . .

answered moving to polynomials . . .

using concepts of algebraic geometry [Zhang, ’12; Mastrolia, EM, Ossola, Peraro ’12]

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.5/17

Algebraic_geometry.tar.gz

deals with multivariate polynomials in z = (z1, z2, . . .) .

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.6/17

Algebraic_geometry.tar.gz

deals with multivariate polynomials in z = (z1, z2, . . .) .

Ideal J ≡ 〈ω1(z) · · ·ωs(z)〉 generated by ωi

J ={∑

i hi(z) ωi(z)}

polynomial coefficients hi(z)

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.6/17

Algebraic_geometry.tar.gz

deals with multivariate polynomials in z = (z1, z2, . . .) .

Ideal J ≡ 〈ω1(z) · · ·ωs(z)〉 generated by ωi

J ={∑

i hi(z) ωi(z)}

polynomial coefficients hi(z)

Multivariate polynomial division of f(z)/{ω1(z), . . . , ωs(z)}

needs an order, i.e. z1z2?> z21

f(z) =∑

i hi(z)ωi(z) +R(z)

hi(z) & R(z) not unique

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.6/17

Algebraic_geometry.tar.gz

deals with multivariate polynomials in z = (z1, z2, . . .) .

Ideal J ≡ 〈ω1(z) · · ·ωs(z)〉 generated by ωi

J ={∑

i hi(z) ωi(z)}

polynomial coefficients hi(z)

Multivariate polynomial division of f(z)/{ω1(z), . . . , ωs(z)}

needs an order, i.e. z1z2?> z21

f(z) =∑

i hi(z)ωi(z) +R(z)

hi(z) & R(z) not unique

Gröbner basis {g1(z), . . . , gr(z)}exists (Buchberger’s algorithm) & generates J

unique R(z)

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.6/17

Algebraic_geometry.tar.gz

deals with multivariate polynomials in z = (z1, z2, . . .) .

Ideal J ≡ 〈ω1(z) · · ·ωs(z)〉 generated by ωi

J ={∑

i hi(z) ωi(z)}

polynomial coefficients hi(z)

Multivariate polynomial division of f(z)/{ω1(z), . . . , ωs(z)}

needs an order, i.e. z1z2?> z21

f(z) =∑

i hi(z)ωi(z) +R(z)

hi(z) & R(z) not unique

Gröbner basis {g1(z), . . . , gr(z)}exists (Buchberger’s algorithm) & generates J

unique R(z)

Hilbert’s NullstellensatzV (J ) = set of common zeros of J

( f = 0 in V (J ) )⇒ ( fr ∈ J for some r )

Weak Nullstellensatz: ( V (J ) = ∅ )⇔ ( 1 ∈ J )

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.6/17

Residue via multivariate division

Ii1···in(k1, . . . , kℓ) =Ni1···in(k1, . . . , kℓ)

Di1(k1, . . . , kℓ) · · ·Din(k1, . . . , kℓ)Ii1···in(z) =

Ni1···in(z)Di1(z) · · ·Din(z)

I

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.7/17

Residue via multivariate division

Ii1···in(z) =Ni1···in(z)

Di1(z) · · ·Din(z)Ii1···in(q1, . . . , qℓ) =

Ni1···in(q1, . . . , qℓ)

Di1(q1, . . . , qℓ) · · ·Din(q1, . . . , qℓ)I

0. in components kµi =∑

j xj,(i) eµ

j,(i)& (k1, . . .)↔ z = (x1,(1), . . . , x1,(2) . . .)

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.7/17

Residue via multivariate division

Ii1···in(z) =Ni1···in(z)

Di1(z) · · ·Din(z)Ii1···in(q1, . . . , qℓ) =

Ni1···in(q1, . . . , qℓ)

Di1(q1, . . . , qℓ) · · ·Din(q1, . . . , qℓ)I

0. in components kµi =∑

j xj,(i) eµ

j,(i)& (k1, . . .)↔ z = (x1,(1), . . . , x1,(2) . . .)

1. build J ≡ 〈Di1 (z) · · ·Din (z)〉 and Gi1···in = {g1(z), . . . , gr(z)}

→ ( Di1 = · · · = Din = 0)⇐⇒ (g1 = · · · = gr = 0 )

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.7/17

Residue via multivariate division

Ii1···in(z) =Γi1···in(z) + ∆i1···in(z)

Di1(z) · · ·Din(z)Ii1···in(z) =

Ni1···in(z)Di1(z) · · ·Din(z)

Ii1···in(q1, . . . , qℓ) =

0. in components kµi =∑

j xj,(i) eµ

j,(i)& (k1, . . .)↔ z = (x1,(1), . . . , x1,(2) . . .)

1. build J ≡ 〈Di1 (z) · · ·Din (z)〉 and Gi1···in = {g1(z), . . . , gr(z)}

2. Ni1···in (z) / Gi1···in Ni1···in = Γi1···in +∆i1···in

∆i1···in is the residue

J ∋ Γi1···in =∑

j hj(z)gj(z) =∑

j Ni1···ij−1ij+1···in (z)Dij (z)

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.7/17

Residue via multivariate division

Ii1···in(z) =n∑

j=1

Ni1···ij−1ij+1···in(z) Dij (z)Di1(z) · · ·Din(z)

+∆i1···in

Di1(z) · · ·Din(z)Ii1···in =

Γi1···ij−1ij+1

Di1(z)

0. in components kµi =∑

j xj,(i) eµ

j,(i)& (k1, . . .)↔ z = (x1,(1), . . . , x1,(2) . . .)

1. build J ≡ 〈Di1 (z) · · ·Din (z)〉 and Gi1···in = {g1(z), . . . , gr(z)}

2. Ni1···in (z) / Gi1···in Ni1···in = Γi1···in +∆i1···in

∆i1···in is the residue

J ∋ Γi1···in =∑

j hj(z)gj(z) =∑

j Ni1···ij−1ij+1···in (z)Dij (z)

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.7/17

Residue via multivariate division

Ii1···in(z) =n∑

j=1

Ni1···ij−1ij+1···in(z) Dij (z)Di1(z) · · ·Din(z)

+∆i1···in

Di1(z) · · ·Din(z)Ii1···in =

Γi1···ij−1ij+1

Di1(z)

0. in components kµi =∑

j xj,(i) eµ

j,(i)& (k1, . . .)↔ z = (x1,(1), . . . , x1,(2) . . .)

1. build J ≡ 〈Di1 (z) · · ·Din (z)〉 and Gi1···in = {g1(z), . . . , gr(z)}

2. Ni1···in (z) / Gi1···in Ni1···in = Γi1···in +∆i1···in

∆i1···in is the residue

J ∋ Γi1···in =∑

j hj(z)gj(z) =∑

j Ni1···ij−1ij+1···in (z)Dij (z)

Reducibility: ( N reducible )⇔ ( N/G ∈ J )→ ( no cut solutions )⇒ ( N reducible ) [Weak Nullstellensatz theorem ]

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.7/17

Residue via multivariate division

Ii1···in =

n∑j=1

Ii1···ij−1ij+1···in +∆i1···in

Di1 · · ·Din

Ii1···in(z) =n∑

j=1

Ni1···ij−1ij+1···in(z) Di

Di1(z) · · ·Din(z)

0. in components kµi =∑

j xj,(i) eµ

j,(i)& (k1, . . .)↔ z = (x1,(1), . . . , x1,(2) . . .)

1. build J ≡ 〈Di1 (z) · · ·Din (z)〉 and Gi1···in = {g1(z), . . . , gr(z)}

2. Ni1···in (z) / Gi1···in Ni1···in = Γi1···in +∆i1···in

∆i1···in is the residue

J ∋ Γi1···in =∑

j hj(z)gj(z) =∑

j Ni1···ij−1ij+1···in (z)Dij (z)

Reducibility: ( N reducible )⇔ ( N/G ∈ J )→ ( no cut solutions )⇒ ( N reducible ) [Weak Nullstellensatz theorem ]

Recursive relation→ The residues are computed iteratively

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.7/17

Residue via multivariate division

Ii1···in =

n∑j=1

Ii1···ij−1ij+1···in +∆i1···in

Di1 · · ·Din

Ii1···in(z) =n∑

j=1

Ni1···ij−1ij+1···in(z) Di

Di1(z) · · ·Din(z)

0. in components kµi =∑

j xj,(i) eµ

j,(i)& (k1, . . .)↔ z = (x1,(1), . . . , x1,(2) . . .)

1. build J ≡ 〈Di1 (z) · · ·Din (z)〉 and Gi1···in = {g1(z), . . . , gr(z)}

2. Ni1···in (z) / Gi1···in Ni1···in = Γi1···in +∆i1···in

∆i1···in is the residue

J ∋ Γi1···in =∑

j hj(z)gj(z) =∑

j Ni1···ij−1ij+1···in (z)Dij (z)

Reducibility: ( N reducible )⇔ ( N/G ∈ J )→ ( no cut solutions )⇒ ( N reducible ) [Weak Nullstellensatz theorem ]

Recursive relation→ The residues are computed iteratively

↑n-denominator integrand

տ

(n-1)-denominator integrand

← residue

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.7/17

Residue via multivariate division

Ii1···in =

n∑j=1

Ii1···ij−1ij+1···in +∆i1···in

Di1 · · ·Din

Ii1···in(z) =n∑

j=1

Ni1···ij−1ij+1···in(z) Di

Di1(z) · · ·Din(z)

0. in components kµi =∑

j xj,(i) eµ

j,(i)& (k1, . . .)↔ z = (x1,(1), . . . , x1,(2) . . .)

1. build J ≡ 〈Di1 (z) · · ·Din (z)〉 and Gi1···in = {g1(z), . . . , gr(z)}

2. Ni1···in (z) / Gi1···in Ni1···in = Γi1···in +∆i1···in

∆i1···in is the residue

J ∋ Γi1···in =∑

j hj(z)gj(z) =∑

j Ni1···ij−1ij+1···in (z)Dij (z)

↑n-denominator integrand

տ

(n-1)-denominator integrand

← residue

Two Approaches

“fit-on-the-cut"→ use generic N ’s to get the parametric form of ∆’s

→ determines the coefficients sampling on the cuts

“divide-and-conquer"→ generate the N of the process→ compute the residues iteratively (no cut solutions needed!)

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.7/17

Maximum cut

Maximum Cut ≡ cut constraining all the ki’s→@ 1 loop: 4-ple cut in 4 dimensions 5-ple cut in d dimensions

→ Assumption: finite number ns of solutions, all non-degenerate

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.8/17

Maximum cut

Maximum Cut ≡ cut constraining all the ki’s→@ 1 loop: 4-ple cut in 4 dimensions 5-ple cut in d dimensions

→ Assumption: finite number ns of solutions, all non-degenerate

Maximum Cut Theorem The residue is parametrized by ns coefficients. It exists an

Maximum Cut Theorem univariate polynomial representation. [Mastrolia, EM, Ossola, Peraro ’12]

→ relies on the Finiteness Theorem & Shape Lemma

⇒ cut-constructibility of the Maximum Cut

⇒ ∃ an univariate parametrization of ∆

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.8/17

Maximum cut

Maximum Cut ≡ cut constraining all the ki’s→@ 1 loop: 4-ple cut in 4 dimensions 5-ple cut in d dimensions

→ Assumption: finite number ns of solutions, all non-degenerate

Maximum Cut Theorem The residue is parametrized by ns coefficients. It exists an

Maximum Cut Theorem univariate polynomial representation. [Mastrolia, EM, Ossola, Peraro ’12]

Maximum cut theorem in action:

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.8/17

“Fit-on-the-cut” approach→ use generic N ’s to get the parametric form of ∆’s

→ determine the coefficients sampling on the cuts

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.9/17

Application: one loop in one slide

I0···(n−1)(k) =N0···(n−1)(k)

D0(k) · · ·Dn−1(k)n > 4I0···(n−1)(q) =

∑i1<<i4

Ni1i2i3i4(q)

Di1(q) · · ·Di4(q)

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.10/17

Application: one loop in one slide

I0···(n−1)(k) =N0···(n−1)(k)

D0(k) · · ·Dn−1(k)n > 4I0···(n−1)(q) =

∑i1<<i4

Ni1i2i3i4(q)

Di1(q) · · ·Di4(q)

Step 1. Reducing to 4-point functions(

D0 = · · · = Dn−1 = 0

impossible

)

(

I0···(n−1) reducible, in termsof (n-2)-integrands

)

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.10/17

Application: one loop in one slide

I0···(n−1)(k) =∑ijkℓ

Iijkℓ(k)I0···(n−1)(q) =N0···(n−1)(q)

D0(q) · · ·Dn−1(q)n > 4I0···(n−1)(q) =

i

Step 1. Reducing to 4-point functions(

D0 = · · · = Dn−1 = 0

impossible

)

(

I0···(n−1) reducible, in termsof (n-2)-integrands

)

reiterate until 4-point integrands are reached

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.10/17

Application: one loop in one slide

I0···(n−1)(k) =∑ijkℓ

Iijkℓ(k)I0···(n−1)(q) =N0···(n−1)(q)

D0(q) · · ·Dn−1(q)n > 4I0···(n−1)(q) =

i

Step 1. Reducing to 4-point functions

Step 2. Reducing the integrands Iijkℓ =Nijkℓ

DiDjDkDℓ

decompose kµ = x1pµj + x2p

µk+ x3p

µℓ+ x4v

µ⊥ & z = (x1, . . . , x4)

Nijkℓ =∑

~a

b~a za1

1 za2

2 za3

3 za4

4

i

ai ≤ 4

define Jijkℓ = 〈Di, . . . , Dℓ〉 & get Gijkℓ = (g1, . . . , g4 ).

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.10/17

Application: one loop in one slide

I0···(n−1)(k) =∑ijkℓ

∆ijkℓ

DiDjDkDℓ

+∑ijk

Iijk(k)I0···(n−1)(q) =∑

i1<<i4

Ii1i2i3i4(q)I0···(n−1)

Step 1. Reducing to 4-point functions

Step 2. Reducing the integrands Iijkℓ =Nijkℓ

DiDjDkDℓ

decompose kµ = x1pµj + x2p

µk+ x3p

µℓ+ x4v

µ⊥ & z = (x1, . . . , x4)

Nijkℓ =∑

~a

b~a za1

1 za2

2 za3

3 za4

4

i

ai ≤ 4

define Jijkℓ = 〈Di, . . . , Dℓ〉 & get Gijkℓ = (g1, . . . , g4 ).

Nijkℓ/Gijkℓ ∆ijkℓ = c0 + c1x4 = c0 + c1 k · v⊥

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.10/17

Application: one loop in one slide

I0···(n−1)(k) =∑ijkℓ

∆ijkℓ

DiDjDkDℓ

+∑ijk

Iijk(k)I0···(n−1)(q) =∑

i1<<i4

Ii1i2i3i4(q)I0···(n−1)

Step 1. Reducing to 4-point functions

Step 2. Reducing the integrands Iijkℓ =Nijkℓ

DiDjDkDℓ 2 coefficients

decompose kµ = x1pµj + x2p

µk+ x3p

µℓ+ x4v

µ⊥ & z = (x1, . . . , x4)

Nijkℓ =∑

~a

b~a za1

1 za2

2 za3

3 za4

4

i

ai ≤ 4

define Jijkℓ = 〈Di, . . . , Dℓ〉 & get Gijkℓ = (g1, . . . , g4 ).

Nijkℓ/Gijkℓ ∆ijkℓ = c0 + c1x4 = c0 + c1 k · v⊥Maximum Cut Theorem

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.10/17

Application: one loop in one slide

I0···(n−1)(k) =∑ijkℓ

∆ijkℓ

DiDjDkDℓ

+∑ijk

∆ijk

DiDjDk

+∑ij

Iij(k)I0···(n−1)(q) =∑ijk

Iijk(q) +

Step 1. Reducing to 4-point functions

Step 2. Reducing the integrands Iijkℓ =Nijkℓ

DiDjDkDℓ 2 coefficients

Step 3. Reducing the integrands Iijk =Nijk

DiDjDk 7 coefficients

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.10/17

Application: one loop in one slide

I0···(n−1)(k) =∑ijkℓ

∆ijkℓ

DiDjDkDℓ

+∑ijk

∆ijk

DiDjDk

+∑ij

∆ij

DiDj

+∑i

Ii(k)I0···(n−1)(q) =

Step 1. Reducing to 4-point functions

Step 2. Reducing the integrands Iijkℓ =Nijkℓ

DiDjDkDℓ 2 coefficients

Step 3. Reducing the integrands Iijk =Nijk

DiDjDk 7 coefficients

Step 4. Reducing the integrands Iij =Nij

DiDj 9 coefficients

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.10/17

Application: one loop in one slide

I0···(n−1)(k) =∑ijkℓ

∆ijkℓ

DiDjDkDℓ

+∑ijk

∆ijk

DiDjDk

+∑ij

∆ij

DiDj

+∑i

∆i

Di

I0···(n−1)(q) =∑ij

Step 1. Reducing to 4-point functions

Step 2. Reducing the integrands Iijkℓ =Nijkℓ

DiDjDkDℓ 2 coefficients

Step 3. Reducing the integrands Iijk =Nijk

DiDjDk 7 coefficients

Step 4. Reducing the integrands Iij =Nij

DiDj 9 coefficients

Step 5. Reducing the integrands Ii =Ni

Di{

Ni linearDi quadratic

in z⇒ ∆i = Ni

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.10/17

Application: one loop in one slide

I0···(n−1)(k) =∑ijkℓ

∆ijkℓ

DiDjDkDℓ

+∑ijk

∆ijk

DiDjDk

+∑ij

∆ij

DiDj

+∑i

∆i

Di

I0···(n−1)(q) =∑ij

Step 1. Reducing to 4-point functions

Step 2. Reducing the integrands Iijkℓ =Nijkℓ

DiDjDkDℓ 2 coefficients

Step 3. Reducing the integrands Iijk =Nijk

DiDjDk 7 coefficients

Step 4. Reducing the integrands Iij =Nij

DiDj 9 coefficients

Step 5. Reducing the integrands Ii =Ni

Di 5 coefficients

Extension to d-dimensions is easyz = (x1, x2, x3, x4) → z = (x1, x2, x3, x4, µ2)

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.10/17

Application: one loop in one slide

I0···(n−1)(k) =∑ijkℓ

∆ijkℓ

DiDjDkDℓ

+∑ijk

∆ijk

DiDjDk

+∑ij

∆ij

DiDj

+∑i

∆i

Di

I0···(n−1)(q) =∑ij

Step 1. Reducing to 4-point functions

Step 2. Reducing the integrands Iijkℓ =Nijkℓ

DiDjDkDℓ 2 coefficients

Step 3. Reducing the integrands Iijk =Nijk

DiDjDk 7 coefficients

Step 4. Reducing the integrands Iij =Nij

DiDj 9 coefficients

Step 5. Reducing the integrands Ii =Ni

Di 5 coefficients

Extension to d-dimensions is easyz = (x1, x2, x3, x4) → z = (x1, x2, x3, x4, µ2)

All the ∆’s agree with the literature [Ossola, Papadopoulos, Pittau ’07; Giele, Kunszt, Melnikov ’08 ]

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.10/17

Application: a two loops example

General result @ two loops:

→(

n− fold cut withn ≥ 9 impossible

)

⇒(

n− denominator integrandswith n ≥ 9 reducible

)

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.11/17

Application: a two loops example

General result @ two loops:

→(

n− fold cut withn ≥ 9 impossible

)

⇒(

n− denominator integrandswith n ≥ 9 reducible

)

Example: five-point N = 4 SYM topology

D3 D5

D2

D7

D6

D8

D1 D4

5

4

32

1

I =N

D1 · · ·D8=

N12345678

D1 · · ·D8+

8∑i=1

N1···(i−1)(i+1)···8∏k 6=i Dk

+

N = α+ v1 · k1 + v2 · k2 [Carrasco, Johansson ’11]

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.11/17

Application: a two loops example

General result @ two loops:

→(

n− fold cut withn ≥ 9 impossible

)

⇒(

n− denominator integrandswith n ≥ 9 reducible

)

Example: five-point N = 4 SYM topology

D3 D5

D2

D7

D6

D8

D1 D4

5

4

32

1

I =N

D1 · · ·D8=

N12345678

D1 · · ·D8+

8∑i=1

N1···(i−1)(i+1)···8∏k 6=i Dk

+

N = α+ v1 · k1 + v2 · k2 [Carrasco, Johansson ’11]

Step 1. Reducing the integrand I = ND1···D8

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.11/17

Application: a two loops example

General result @ two loops:

→(

n− fold cut withn ≥ 9 impossible

)

⇒(

n− denominator integrandswith n ≥ 9 reducible

)

Example: five-point N = 4 SYM topology

D3 D5

D2

D7

D6

D8

D1 D4

5

4

32

1

I =N

D1 · · ·D8=

N12345678

D1 · · ·D8+

8∑i=1

N1···(i−1)(i+1)···8∏k 6=i Dk

+

N = α+ v1 · k1 + v2 · k2 [Carrasco, Johansson ’11]

Step 1. Reducing the integrand I = ND1···D8

decompose kµ1 =∑

i xieµi kµ2 =

j yjτµj & z = (x1, . . . , x4, y1, · · · y4)

define J12345678 = 〈D1, . . . , D8〉 & get G12345678 = (g1, . . .).

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.11/17

Application: a two loops example

General result @ two loops:

→(

n− fold cut withn ≥ 9 impossible

)

⇒(

n− denominator integrandswith n ≥ 9 reducible

)

Example: five-point N = 4 SYM topology

D3 D5

D2

D7

D6

D8

D1 D4

5

4

32

1

I =∆12345678

D1 · · ·D8+

8∑i=1

N1···(i−1)(i+1)···8∏k 6=i Dk

I1···(i−1)(i+1)···8

N = α+ v1 · k1 + v2 · k2 [Carrasco, Johansson ’11]

Step 1. Reducing the integrand I = ND1···D8

decompose kµ1 =∑

i xieµi kµ2 =

j yjτµj & z = (x1, . . . , x4, y1, · · · y4)

define J12345678 = 〈D1, . . . , D8〉 & get G12345678 = (g1, . . .).

N/G12345678 ∆12345678 = c0 + c1x4 + c2y3 + c3y32 + c4y4 + c5x4y4 + c6y42 + c7y43

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.11/17

Application: a two loops example

General result @ two loops:

→(

n− fold cut withn ≥ 9 impossible

)

⇒(

n− denominator integrandswith n ≥ 9 reducible

)

Example: five-point N = 4 SYM topology

D3 D5

D2

D7

D6

D8

D1 D4

5

4

32

1

I =∆12345678

D1 · · ·D8+

8∑i=1

N1···(i−1)(i+1)···8∏k 6=i Dk

I1···(i−1)(i+1)···8

N = α+ v1 · k1 + v2 · k2 [Carrasco, Johansson ’11]

Step 1. Reducing the integrand I = ND1···D8

decompose kµ1 =∑

i xieµi kµ2 =

j yjτµj & z = (x1, . . . , x4, y1, · · · y4)

define J12345678 = 〈D1, . . . , D8〉 & get G12345678 = (g1, . . .).

N/G12345678 ∆12345678 = c0 + c1x4 + c2y3 + c3y32 + c4y4 + c5x4y4 + c6y42 + c7y43

ci’s obtained by sampling N on the

eight solutions of D1 = · · · = D8 = 0 Maximum Cut Theorem

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.11/17

Application: a two loops example

General result @ two loops:

→(

n− fold cut withn ≥ 9 impossible

)

⇒(

n− denominator integrandswith n ≥ 9 reducible

)

Example: five-point N = 4 SYM topology

D3 D5

D2

D7

D6

D8

D1 D4

5

4

32

1

I =∆12345678

D1 · · ·D8+

8∑i=1

N1···(i−1)(i+1)···8∏k 6=i Dk

I1···(i−1)(i+1)···8

N = α+ v1 · k1 + v2 · k2 [Carrasco, Johansson ’11]

Step 1. Reducing the integrand I = ND1···D8

Step 2. Reducing the integrand Ii1···i7 =Ni1···i7

Di1···Di7

e.g. (i1 · · · i7) = (1234567)

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.11/17

Application: a two loops example

General result @ two loops:

→(

n− fold cut withn ≥ 9 impossible

)

⇒(

n− denominator integrandswith n ≥ 9 reducible

)

Example: five-point N = 4 SYM topology

D3 D5

D2

D7

D6

D8

D1 D4

5

4

32

1

I =∆12345678

D1 · · ·D8+

8∑i=1

N1···(i−1)(i+1)···8∏k 6=i Dk

I1···(i−1)(i+1)···8

N = α+ v1 · k1 + v2 · k2 [Carrasco, Johansson ’11]

Step 1. Reducing the integrand I = ND1···D8

Step 2. Reducing the integrand Ii1···i7 =Ni1···i7

Di1···Di7

, e.g. (i1 · · · i7) = (1234567)

5

4

32

1

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.11/17

Application: a two loops example

General result @ two loops:

→(

n− fold cut withn ≥ 9 impossible

)

⇒(

n− denominator integrandswith n ≥ 9 reducible

)

Example: five-point N = 4 SYM topology

D3 D5

D2

D7

D6

D8

D1 D4

5

4

32

1

I =∆12345678

D1 · · ·D8+

8∑i=1

∆1···(i−1)(i+1)···8∏k 6=i Dk

N12345678

D1 · · ·D8+

N = α+ v1 · k1 + v2 · k2 [Carrasco, Johansson ’11]

Step 1. Reducing the integrand I = ND1···D8

Step 2. Reducing the integrand Ii1···i7 =Ni1···i7

Di1···Di7

, e.g. (i1 · · · i7) = (1234567)

5

4

32

1

N1234567/G1234567 ∆1234567 = 32 monomials in x1,2, y1,2

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.11/17

Application: a two loops example

General result @ two loops:

→(

n− fold cut withn ≥ 9 impossible

)

⇒(

n− denominator integrandswith n ≥ 9 reducible

)

Example: five-point N = 4 SYM topology

D3 D5

D2

D7

D6

D8

D1 D4

5

4

32

1

I =∆12345678

D1 · · ·D8+

8∑i=1

∆1···(i−1)(i+1)···8∏k 6=i Dk

N12345678

D1 · · ·D8+

N = α+ v1 · k1 + v2 · k2 [Carrasco, Johansson ’11]

Step 1. Reducing the integrand I = ND1···D8

Step 2. Reducing the integrand Ii1···i7 =Ni1···i7

Di1···Di7

, e.g. (i1 · · · i7) = (1234567)

5

4

32

1

N1234567/G1234567 ∆1234567 = 32 monomials in x1,2, y1,2

coefficients by sampling ∆1234567 = (N −∆12345678)/D8

on the solutions of D1 = · · · = D7 = 0

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.11/17

Application: a two loops example

General result @ two loops:

→(

n− fold cut withn ≥ 9 impossible

)

⇒(

n− denominator integrandswith n ≥ 9 reducible

)

Example: five-point N = 4 SYM topology

D3 D5

D2

D7

D6

D8

D1 D4

5

4

32

1

I =c0 + c1(k1 · p5) + c1(k1 · p1)

D1 · · ·D8+

8∑i=1

ci∏k 6=i Dk

N = α+ v1 · k1 + v2 · k2 [Carrasco, Johansson ’11]

Step 1. Reducing the integrand I = ND1···D8

Step 2. Reducing the integrand Ii1···i7 =Ni1·i7

Di1···Di7

e.g. (i1 · · · i7) = (1234567)

reduction completed after two steps (N = 4 ) (Checked via the N = N test )

other topologies & N = 8 SUGRA reduced

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.11/17

Application: a two loops example

General result @ two loops:

→(

n− fold cut withn ≥ 9 impossible

)

⇒(

n− denominator integrandswith n ≥ 9 reducible

)

Example: five-point N = 4 SYM topology

D3 D5

D2

D7

D6

D8

D1 D4

5

4

32

1

I =c0 + c1(k1 · p5) + c1(k1 · p1)

D1 · · ·D8+

8∑i=1

ci∏k 6=i Dk

N = α+ v1 · k1 + v2 · k2 [Carrasco, Johansson ’11]

Integrand reduction via unitarity works as well: [Uli Schubert’s Diplomarbeit]

numerator known at the multiple cuts only

different bookkeeping in the top-down approach, e.g.

4

5

2

1

3

=4

5

2

1

3

3

1

24

5

3

5

42

1

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.11/17

“divide-and-conquer” approach→ generate the N of the process→ compute the residues iteratively (no cut solutions needed!)

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.12/17

Application: the photon self-energy I

The method does not require on-shell solutions higher powers of propagators are not problematic

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.13/17

Application: the photon self-energy I

The method does not require on-shell solutions higher powers of propagators are not problematic

Example: QED photon self energy @ two loops

p

D3

D1

D4

D2

D1

I =N

D21D2D3D4

N = 16[µ211 − k21 (k1 · p)] + · · ·

d dimensions: kµi = k

µi + ~µi µij ≡ ~µi · ~µj

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.13/17

Application: the photon self-energy I

The method does not require on-shell solutions higher powers of propagators are not problematic

Example: QED photon self energy @ two loops

p

D3

D1

D4

D2

D1

I =N

D21D2D3D4

N = 16[µ211 − k21 (k1 · p)] + · · ·

d dimensions: kµi = k

µi + ~µi µij ≡ ~µi · ~µj

Step 1. Reducing the integrand I = ND2

1D2D3D4

decompose kµ1 =∑

i xieµi kµ2 =

i yieµi z = (xi, yj , µ11, µ22, µ12)

define J1234 = 〈D1, D2, D3, D4〉 ( G1234 ) & J11234 = 〈D21 , D2, D3, D4〉

N/G1234 N = α1234 D1 + α1124 D3 +R R = 8µ11(2µ11 − p2)

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.13/17

Application: the photon self-energy I

The method does not require on-shell solutions higher powers of propagators are not problematic

Example: QED photon self energy @ two loops

p

D3

D1

D4

D2

D1

I =∆11234

D21D2D3D4

+N1234

D1D2D3D4+N1124

D21D2D4

N = 16[µ211 − k21 (k1 · p)] + · · ·

d dimensions: kµi = k

µi + ~µi µij ≡ ~µi · ~µj

Step 1. Reducing the integrand I = ND2

1D2D3D4

decompose kµ1 =∑

i xieµi kµ2 =

i yieµi z = (xi, yj , µ11, µ22, µ12)

define J1234 = 〈D1, D2, D3, D4〉 ( G1234 ) & J11234 = 〈D21 , D2, D3, D4〉

N/G1234 N = α1234 D1 + α1124 D3 +R R = 8µ11(2µ11 − p2)

→ R /∈ J1234 ⇒ R /∈ J11234 ⇒ ∆11234 ≡ R

→ N1234 ≡ α1234 & N1124 ≡ α1124

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.13/17

Application: the photon self-energy I

The method does not require on-shell solutions higher powers of propagators are not problematic

Example: QED photon self energy @ two loops

p

D3

D1

D4

D2

D1

I =∆11234

D21D2D3D4

+∆1234

D1D2D3D4+N1124

D21D2D4

+N234

D2D3D4

N = 16[µ211 − k21 (k1 · p)] + · · ·

d dimensions: kµi = k

µi + ~µi µij ≡ ~µi · ~µj

Step 1. Reducing the integrand I = ND2

1D2D3D4

Step 2. Reducing the integrand I1234 = N1234

D1D2D3D4

use J1234 = 〈D1, D2, D3, D4〉 & G1234

N1234/G1234 N1234 = N234 D1 +∆1234 ∆1234 = −8(µ11 + p2)

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.13/17

Application: the photon self-energy I

The method does not require on-shell solutions higher powers of propagators are not problematic

Example: QED photon self energy @ two loops

p

D3

D1

D4

D2

D1

I =∆11234

D21D2D3D4

+∆1234

D1D2D3D4+

∆1124

D21D2D4

+N234

D2D3D4+

N124

D1D2D4

N = 16[µ211 − k21 (k1 · p)] + · · ·

d dimensions: kµi = k

µi + ~µi µij ≡ ~µi · ~µj

Step 1. Reducing the integrand I = ND2

1D2D3D4

Step 2. Reducing the integrand I1234 = N1234

D1D2D3D4

Step 3. Reducing the integrand I1124 = N1124

D21D3D4

define J124 = 〈D1, D2, D4〉 & G124

N1124/G124 N1124 = N124 D1 +∆1124 ∆1124 = 8µ11

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.13/17

Application: the photon self-energy I

The method does not require on-shell solutions higher powers of propagators are not problematic

Example: QED photon self energy @ two loops

p

D3

D1

D4

D2

D1

I =∆11234

D21D2D3D4

+∆1234

D1D2D3D4+

∆1124

D21D2D4

+∆234

D2D3D4+

∆124

D1D2D4

N = 16[µ211 − k21 (k1 · p)] + · · ·

d dimensions: kµi = k

µi + ~µi µij ≡ ~µi · ~µj

Step 1. Reducing the integrand I = ND2

1D2D3D4

Step 2. Reducing the integrand I1234 = N1234

D1D2D3D4

Step 3. Reducing the integrand I1124 = N1124

D21D3D4

Step 4. / 5. Reducing I124 = N124

D1D2D4I234 = N234

D2D3D4

I124 & I234 irreducible i.e. Nx = ∆x

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.13/17

Application: the photon self-energy I

The method does not require on-shell solutions higher powers of propagators are not problematic

Example: QED photon self energy @ two loops

p

D3

D1

D4

D2

D1

I =∆11234

D21D2D3D4

+∆1234

D1D2D3D4+

∆1124

D21D2D4

+∆234

D2D3D4+

∆124

D1D2D4

N = 16[µ211 − k21 (k1 · p)] + · · ·

d dimensions: kµi = k

µi + ~µi µij ≡ ~µi · ~µj

Reduction completed after five steps . . .

I =8µ11(2µ11 − p2)

D21D2D3D4

−8(µ11 + p2)

D1D2D3D4+

8µ11

D21D2D4

−8

D2D3D4+

8

D1D2D4

. . . performed for the full N . . .

. . . and for the other diagrams

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.13/17

Application: the photon self-energy II

p

D3

D1

D4

D2

D1

I = I0 + ǫ I1 + ǫ2 I2

Ia =Na

D21D2D3D4

[Mastrolia, Peraro, in progress]

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.14/17

Application: the photon self-energy II

p

D3

D1

D4

D2

D1

I = I0 + ǫ I1 + ǫ2 I2

Ia =Na

D21D2D3D4

[Mastrolia, Peraro, in progress]

The numerator

N0 = 16µ11µ12 + 16µ211 − 16 (p · k1) k21 − 32 (p · k1) (k1 · k2) + 32 (p · k1)µ12

N0 = +16 (p · k1)µ11 + 16 (p · k2) k21 − 16 (p · k2)µ11 + 16 k21 (k1 · k2)N0 = −16 k21 µ12 − 32 k21 µ11 + 16 (k21)

2 − 16 (k1 · k2)µ11

N1 = −32µ11µ12 − 32µ211 + 32 (p · k1) k21 + 64 (p · k1) (k1 · k2)− 64 (p · k1)µ12

N1 = −32 (p · k1)µ11 − 32 (p · k2) k21 + 32 (p · k2)µ11 − 32 k21 (k1 · k2) + 32 k21 µ12

N1 = +64 k21 µ11 − 32 (k21)2 + 32 (k1 · k2)µ11

N2 = 16µ11µ12 + 16µ211 − 16 (p · k1) k21 − 32 (p · k1) (k1 · k2) + 32 (p · k1)µ12

N2 = +16 (p · k1)µ11 + 16 (p · k2) k21 − 16 (p · k2)µ11 + 16 k21 (k1 · k2)N2 = −16 k21 µ12 − 32 k21 µ11 + 16 (k21)

2 − 16 (k1 · k2)µ11.

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.14/17

Application: the photon self-energy II

p

D3

D1

D4

D2

D1

I = I0 + ǫ I1 + ǫ2 I2

Ia =Na

D21D2D3D4

[Mastrolia, Peraro, in progress]

The numerator’s decomposition

I0 =−8p2

D21D2D3

+8p2

D21D2D4

+8

D21D3

+−8

D21D4

+16 k2 · p

D1D2D3D4+

8

D2D3D4

I1 =16p2

D21D2D3

+−16p2

D21D2D4

+−16

D21D3

+16

D21D4

+−32 k2 · p

D1D2D3D4+

−16

D2D3D4

I2 =−8p2

D21D2D3

+8p2

D21D2D4

+8

D21D3

+−8

D21D4

+16 k2 · p

D1D2D3D4+

8

D2D3D4

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.14/17

Conclusions

Integrand reduction via multivariate polynomial division

novel framework for multi-loop computationsconstructs residues iteratively . . .

. . . for any amplitude . . .

. . . at any number of loops

uses a "minimal" frameworkone ingredient: Feynman denominatorsone operation: polynomial division

leads to new insight into amplitudesreducibility criteriamaximum cut theorem

Outlook

Automation

Implement identities to reduce the number of MI’se.g. merge integrand reduction and IBP’s

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.15/17

Backup Slides

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.16/17

Maximum cut theorem – proof

Maximum Cut Theorem The residue is parametrized by ns coefficients. It exists an

Maximum Cut Theorem univariate polynomial representation.

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.17/17

Maximum cut theorem – proof

Maximum Cut Theorem The residue is parametrized by ns coefficients. It exists an

Maximum Cut Theorem univariate polynomial representation.

Proof

We parametrize the loop momenta via z = (z1, . . . , zm). The solutions of the cut are,

z(i) =(

z(i)1 , . . . , z

(i)m

)

i = 1, . . . , ns

finite and non-degenerate solution⇒ J is zero-dimensional and radical.

Finiteness Theorem holds⇒ The remainder is parametrized by ns coefficients.

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.17/17

Maximum cut theorem – proof

Maximum Cut Theorem The residue is parametrized by ns coefficients. It exists an

Maximum Cut Theorem univariate polynomial representation.

Proof

We parametrize the loop momenta via z = (z1, . . . , zm). The solutions of the cut are,

z(i) =(

z(i)1 , . . . , z

(i)m

)

i = 1, . . . , ns

finite and non-degenerate solution⇒ J is zero-dimensional and radical.

Finiteness Theorem holds⇒ The remainder is parametrized by ns coefficients.

Moreover:

We can assume z(i)1 6= z

(j)1 ∀ i 6= j.

J and z1 fulfill the Shape Lemma

⇒ Gröbner basis for the lexicographic order z1 < z2 < · · · < zn is

g1(z) = f1(z1)

g2(z) = z2 − f2(z1)

.

.

.

gm(z) = zm − fm(z1)

f1 = rank-ns square-free polynomial.

⇒ Remainder = univariate polynomial in z1 of degree (ns − 1).

E. Mirabella, Amplitudes 2013, Ringberg Castle, 05.02.2013 – p.17/17

Recommended