Mapping the Pathways to “Beyond–CMOS” Technology for ... · exp{-ΔE/kT} Conduction band 2d...

Preview:

Citation preview

Mapping the Pathways to “Beyond–CMOS” Technology for

Computation

IanYoungSeniorFellow,TechnologyandManufacturingGroup,

Director,ExploratoryIntegratedCircuits,ComponentsResearch

IntelCorporaBonHillsboro,Oregon

ExploratoryIntegratedCircuitsGroup/ComponentsResearch 1

Energyvs.Delay,AdderCMOS ref

Electronic

Spintronic

Ferroelectric

Orbitronic

Straintronic

ExploratoryIC/ComponentsResearch2

Slower,butnon-volaBle

TFETSub-thresholdSlope• TunnelingprobabilityincreasessharplyattheonsetofSourceValanceBandandChannelConducBonBandoverlap

E

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

0.0 0.1 0.2 0.3 0.4

ID (A/um)

VG (V)

VDS=0.4V

TFET

S

Ch Ch

D D

S

Higher VG Lowers EC(Channel)

60 mV/dec

DensityOfStates

ExploratoryIntegratedCircuitsGroup/ComponentsResearch 3

Figure1:(a)TFETvsMOSFETstructureandprincipleofoperaBon:drive-current(transport)definedbytunneling,steep-SSduetofilteringofhigh-energycarriers.(b)IDSvsVGSforGaSb/InAshet-jn.N-andP-TFET,GeSnhet-jn.N-andP-TFETcomparedwithSiandInAsMOSFET

NaturePhysics4,851-854(2008)

Spin logic device based on spin torque

6ExploratoryIntegratedCircuitsGroup/ComponentsResearch

Vsp

FM1 FM2

Output

NatureNano5,266(2010).

Proposed all Spin Logic Device (ASL)

Delay, ps 10 0 10 1 10 2 10 3 10 4

E n e r

g y , f

J

10 -4

10 -3

10 -2

10 -1

10 0

10 1

CMOS HP

CMOS LV

ITFET

FEFET

BisFET

Inpl ASL

STT/DW SMG

STOlogic

SWD

NML

NAND2

CMOS LP

PMA ASL

PMA imp Anis

PMA imp Anis+Gmix

D.E.Nikonov,I.A.Young,IEEEJournalonExploratorySolid-StateComputaBonalDevicesandCircuits2015

Solid-StateDevicesandMaterials,Sept.27th-30th2015,Sapporo,Japan 7

Summary:

q  Benchmarking of Beyond-CMOS Devices is useful to explore new device concepts.

q  Spin Logic is an interesting device due to low operating voltage and non-volatility.

§  Needs materials and circuit research q  Tunneling FET an attractive option for replacing

CMOS due to it’s steep sub-threshold slope and charge token like CMOS

ExploratoryIntegratedCircuitsGroup/ComponentsResearch 8

Reboo0nhg2015

RecentProgressinSteepSlopeTransistors

SumanDa9a

PennsylvaniaStateUniversity,UniversityPark,PA,USAUniversityofNotreDame,NotreDame,IN,USA

Slide10

SteepSlope(SS)FETs

ü  SSFETstoenablecon0nuedoracceleratedsupplyvoltagescaling

SS:SS<kT/q

VGS

IOFF

IOFF

IDS

MOSFET:SS≥kT/q

SteepslopeFETs

Slide11

SS ≈ ln10 1VTW

dVTWdVGS

+ ξ + bξ 2

dξdVGS

⎣⎢

⎦⎥ − cV

dψ S

dVGS− cQ

dnSdVGS

voltage-gainusingnega.vecapacitance

carriergainusingcorrela.on,phase

transi.on

interbandtunnelingusingenergyfiltering

LEASTStarnetcenter(SRCandDARPA)atNotreDamefocusesondemonstraBngsteepslopeFETs

Slide12

10-1 100 101 102 103 104 10510-2

10-1

100

101 0.9V

0.6V

HTFET Inverter Si FinFET Inverter

0.1V0.2V0.3V0.4V

0.5V

0.1V

0.2V0.3V

0.4V0.5V

0.6V

Ener

gy p

er c

ycle

(aJ)

Delay (ps)

Lg=20nm

0.0 0.2 0.4 0.6 0.8

VDS=0.3V,0.5V

N-HTFET

22nm Si FinFET

40mV/dec

-0.8 -0.6 -0.4 -0.2 0.010-4

10-3

10-2

10-1

100

101

102

103

104

22nm Si FinFET

44mV/dec

Dra

in C

urre

nt I D

S (µ

A/µ

m)

VDS=-0.3V,-0.5V

P-HTFET

Lg=20nm,EOT=0.5nm Tb=7nm,IOFF=5×10-4uA/um

GaAs0.35Sb0.65In0.7Ga0.3As In0.65Ga0.35As

GaAs0.4Sb0.6

Eb,eff=0.4eV (Quantized) Eb,eff=0.45eV (Quantized)

Gate Voltage VGS (V)

HTFETinverter:EnergyDelayPromise

Courtesy: H. Liu

ü HTFETinvertershowsenergyefficientopera0onoverCMOSatultralowVDDapplica0on(intheory)

VDD Scaling

Slide13

HTFETDemonstraBonPla`orm

NTFET

Gate,Sourceviapadsdeposi0on

TakeAways

Slide14

•  TunnelFETs– Materials:interfacedefectcontrol–  Devices:scaling,layout,variaBon–  Circuits:leveragesub-thresholdCMOSdesigntechniques–  Architecture:heterogenousmixedcoretargeBngdimsilicon

•  NegaBveCapacitanceFETs– Materials:scaling,switchingspeed,historyeffect–  Devices:variaBon,aging,endurance–  CircuitsandArchitecture:tuninghysteresis,exploiBngnonvolaBlty

•  PhaseTransiBonFETs– Materials:thermalstability,on-offconductancera0o–  Devices:monolithicintegraBon,switchingspeed–  CircuitsandArchitecture:lowpowerdigitalCMOSandbeyond(neuromorphic,

coupledoscillators)

Moore'sLawforEnergy:Searchingforamilli-VoltSwitch

EliYablonovitch,

Director,NSFCenterforEnergyEfficientElectronicsScience

Reboo0ngCompu0ngSummit4

WashingtonDCDec.11,2015

A problem arises from states where they should not be:

exp{-ΔE/kT}

Conduction band

2d quantum Density of States ~1012 states/cm2eV

Valence band

2d-interface defect density ~1011 states/cm2eV

The low voltage tunnel switch concept demands a higher degree of perfection than previously required in electronics.

Amuchmorechemicalapproachisneeded§  We are placing attention squarely on novel materials systems capable of

producing the most perfect molecular scale device structures, that will be a pre-requisite for future progress. - chalcogenide monolayer structures - molecular synthesized structures

molecularprecursor

doublequantumdotgraphene

G

D

S

G

WSe2

insulator

MoS2

AliJavey YablonovitchFischerSwager

By chemical treatment we have raised the luminescence efficiency of monolayer MoS2 by orders of magnitude to >95%

A. Javey et al, SCIENCE 350, 1065 (Nov. 2015)

Summary

1. The Moore's Law for miniaturization will be replaced by the Moore's Law for Energy.

2.  There is up to a 106× reduction available.

3.  This will require new Materials Science, including improvement in the new 2d monolayer semiconductors. 4.  New architectures would be nice, but the current architecture can be preserved.

Present2015-2030Roadmap•  FinFETgoodfor5+5yearsto2025•  2005.NRI:NewSwitch

–  Technologyreuse:cousinsofCMOS–  Exploremagneto-electriceffects

•  2010.TFETlookspromising,effortincreased–  Newmagneto-electricdevicesproposed–  MemoryopBonsontheraise

•  2015.TFETgoodfor2020-2025coexistencewithCMOS–  Increaseeffortonmagneto-electriclikelywinner(s)–  3DmemoryinproducBon–  ResisBvememoryverypromising

•  2020.Magneto-electricearliestinserBon–  Somenewmemorymakesitbig

Needs

ResearchFaciliBescapableoffulldeviceprocesscapability

Recommended