MAKE AND DO ALGEBRA LESSON PLANS

Preview:

DESCRIPTION

THESRE IS NOTHING ABSTRACT ABOUT ALGEBRA.

Citation preview

Brainstorming About the College Application Essay Brainstorming The most important part of your essay is the subject matter. To begin brainstorming a subject idea, consider the following points. From this brainstorming session, you may find a subject you had not considered at first. Finally, remember that the goal of brainstorming is the development of ideas -- so don't rule anything out at this stage. See if any of these questions help you with developing several ideas for your college essay. * What are your major accomplishments, and why do you consider them accomplishments? Do not limit yourself to accomplishments you have been formally recognized for since the most interesting essays often are based on accomplishments that may have been trite at the time but become crucial when placed in the context of your life. * Does any attribute, quality, or skill distinguish you from everyone else? How did you develop this attribute? * Consider your favorite books, movies, works of art, etc. Have these influenced your life in a meaningful way? Why are they your favorites?

• What was the most difficult time in your LIFE AND HOW DIDI YOU OVERCOME?

Google,Make and Do these words Make an Representation; draw

2

a picture, Make a Model, Have Fun! ALGEBRA WORKS Real Numbers

3

Number Line

4

5

6

7

8

9

10

11

thisispg28

Number LineA number line is aninfinitely long linewhose points matchup with the real num-ber system.

12

Coordinate Plane

13

14

Dr.Henry  Sampson    On  6  July  1971,  Dr.  Sampson  invented  the  technology  which  made  the  cell  phone  possible.    AFRIKAAN  Descendants  of  Noah  

15

Ham  Cush  Nimrod,  Seba,  Havilah,  Sabtah,  Raamah  (sons:  Sheba,  Dedan),  Sabteca  Mizraim  Ludim,  Anamim,  Lehabim,  Naphtuhim,  Pathrusim,  Casluhim,  Caphtorim  Put  No  children  listed.  Caanan  Sidon,  Heth,  Jebusite,  Amorite, Girgashite, Hivite, Arkite, Sinite, Arvadite, Zemarite, Hamathite

16

17

18

19

20

21

22

Heptagon

23

24

25

26

27

28

180 degrees

parallel lines; 90 degrees perpendicular; adjacent; line relationships 180 degrees 1D line 2D plane 3D prism 90 degrees Across Adjacent

29

Amplify Amplitude Circle

30

Circumference Column Congruent

31

Cone

 Coordinate Plane Rise/Run Cartesian  Plane  The  Cartesian  plane  is  a  plane  (meaning  that  it's  flat)  made  up  of  an  x  axis  (the  horizontal  line)  and  a  y  axis  (the  vertical  line).  

Cartesian  Coordinates  Coordinates  on  the  Cartesian  plane  are  a  set  of  numbers  officially  called  "an  ordered  pair"  that  are  in  the  form  (  x  ,  y  )  ...  The  x  guy  is  how  far  to  the  right  or  left  you've  counted  over...  and  the  y  guy  is  how  far  up  or  down  you've  counted.    cont  from  pg  

Coordinate  This  is  the  same  thing  as  Cartesian  Coordinates...  Coordinates  on  the  Cartesian  plane  are  a  set  of  numbers  officially  called  "an  ordered  

32

pair"  that  are  in  the WHICH WAY DO WE GO?  

form  (  x  ,  y  )

33

34

35

Cross multiply

36

Cylinder

37

38

Equation

39

Equilateral Expressions FOIL

this is pg27of WLA/ART

cont from pg<None>

cont onpg<None>Can you find

the cure?

40

Function

41

Integers Lateral Legs

 Line relationships Linear Number Line Numerator

42

Operation Order of

Parallel

43

Parallel lines; 90 degrees perpendicular; adjacent; line relationships

cont from pg

CCaall ii ffoorrnniiaa EEdd CCooddee §§ 5511226666..((OOppeerr aatt iioonn CCoonntt iinnggeenntt)) MMooddeell GGaanngg VViioolleennccee

SSuupppprreessssiioonn aanndd SSuubbssttaannccee AAbbuussee PPrreevveenntt iioonn

CCuurrrr iiccuulluummbb)) TThhee OOff ffiiccee ooff CCrriimmiinnaall JJuussttii ccee

PPllaannnniinngg sshhaallll ddeevveelloopp aann iinnddeeppeennddeenntt eevvaalluuaattiioonn

ooff tthhee ppuuppii ll oouuttccoommeess ooff tthhee mmooddeell

LET’S MAKE A SLAVEThe Black slaves after receiving this indoctrinationshall carry on and will become self-refueling andself-generating for HUNDREDS of years, maybeTHOUSANDS. You must pitch the OLD black malevs. the YOUNG black male, and the YOUNG black

male againstthe OLD blackmale. Youmust use theDARK skinslaves vs. theLIGHT skinslaves, andthe LIGHT skinslaves vs. theDARK skinslaves.

cont from pg<None>

this is pg22 ofWLA/ART

ParallelTwo lines (lying in the same plane) are parallelif they never intersect... This means that thetwo lines are always the same distance apart.

44

Perimeter

Perpendicular

Point  Polygon

Polyhedron Quadratic Quadrilateral Ratio; Proportion; Cross Multiply; Similar; congruent; Linear; Function; Percent;

 

45

Decimal;

46

Ray

 Real Numbers Rectangle Relativity

47

48

49

50

Rise/Run

Row /Column

 

51

 

52

Sides

Similar

53

Simplify

54

55

Slope

 

56

SLOPE

57

Sphere

58

59

Square

60

Square area Surface area

61

Symmetry Tangent Transversal Trapezoid

62

63

64

Triangle

65

Vertical

66

67

68

69

70

Angle right Axis Column Degree 90(like a book) 180(straight Line)

71

Isosceles triangle Obtuse triangle Proportion Ray Relativity a x b = c; c/a=b; c/b=a

Sides

72

Scalene Vector Vertical

73

Make Tables, describe in words, draw a picture, write and solve equations What ever you do, do it better than any one else. Just Make it your own. Example: The height of a tree was 7 inches in the year 2000. Each year the same tree grew an additional 10 inches. Write an equation to show the height h of the tree in y years. Let y be the number of years after the year 2000. The most literal equation might be 7 + 10y = h.

74

75

Right Angle

Acute Angle

Quadrilaterals

Triangular Prism

Prism

Cone

Sphere

Cube

134

76

77

78

this ispg121 ofWLA/ART

contfrom pg<None>

cont from pg<None>

this is pg121of WLA/ART

cont onpg<None>

79

80

81

82

this ispg129

contfrom

cont onpg<None>

this ispg129 ofWLA/ART

cont from pg<None>

cont onpg<None>

83

84

 Multiplication  of  Polynomials  Multiplication  of  a  Polynomial  by  a  Monomial  To  multiply  a  polynomial  by  a  monomial,  use  the  distributive  property:  multiply  each  term  of  the  polynomial  by  the  monomial.  This  involves  multiplying  coefficients  and  adding  exponents  of  the  appropriate  variables.

85

6x –2 This is NOT a polynomial term... ...because the variable has a negative exponent. 1/x2 This is NOTa polynomial term... ...because the variable is in the denominator. sqr t(x) This is NOTa polynomial term... ...because the variable is inside a radical. 4x2 This IS a polynomial term....because it obeys all the rules. cont on pg<None> this

86

87

Table  of  Formulas  For  Geometry  A  table  of  formulas  for  geometry,  related  to  area  and  perimeter  of  triangles,  rectangles,  cercles,  sectors,  and  volume  of  sphere,  cone,  cylinder  are  presented.  Right  Triangle  and  Pythagora's  theorem  Pythagora's  theorem:  The  two  sides  a  and  b  of  a  right  triangle  and  the  hypotenuse  c  are  related  by  a  2  +  b  2  =  c  2  Right  Triangle  Area  and  Perimeter  of  Triangle  Triangle  Perimeter  =  a  +  b  +  c  There  are  several  formulas  for  the  area.  If  the  base  b  and  the  corresponding  height  h  are  known,  we  use  the  formula  Area  =  (1  /  2)  *  b  *  h.  

88

If  two  sides  and  the  angle  between  them  are  known,  we  use  one  of  the  formulas,  depending  on  which  side  and  which  angle  are  known  Area  =  (1  /  2)*  b  *  c  sin  A  Area  =  (1  /  2)*  a  *  c  sin  B  Area  =  (1  /  2)*  a  *  b  sin  C  .  If  all  three  sides  are  known,  we  may  use  Heron's  formula  for  the  area.  Area  =  sqrt  [  s(s  -­‐  a)(s  -­‐  b)(s  -­‐  c)  ]  ,  where  s  =  (a  +  b  +  c)/2.  Area  and  Perimeter  of  Rectangle  Rectangle Perimeter = 2L + 2W Area = L * W Area of Parallelogram Area = b * h Area of Trapezoid Trapezoid Area = (1 / 2)(a + b) * h Circumference of a Circle and Area of a Circular Region CircleCircumference = 2*Pi*r Area = Pi*r 2 Arclength and Area of a Circular Sector Sector Arclength: s = r*t Area = (1/2) *r 2 * t where t is the central angle in RADIANS. Volume and Surface Area of a Rectangular Solid Sector Volume = L*W*H Surface Area = 2(L*W + H*W + H*L) Volume and Surface Area of a Sphere Sphere Volume = (4/3)* Pi * r 3 Surface Area = 4 * Pi * r 2 Volume and Surface Area of a Right Circular Cylinder Volume = Pi * r 2 * h Surface Area = 2 * Pi * r * h Volume and Surface Area of a Right Circular Cone right cone

89

Volume = (1/3)* Pi * r 2 * h Surface Area = Pi * r * sqrt (r 2 + h

         Here  are  a  couple    WLA/ART  examples  of  what  square  root  means      

             

90

         Scientific  Notation  Scientific  notation  is  a  way  to  write  a  number  as  the  product  of  a  number  between  1  and  10  and  a  multiple  of  10.  Examples:

91

2)

92

93

94

95

96

97

98

99

number  of  sides        name  3  equilateral  triangle  4  square  5  pentagon  6  hexagon  7  heptagon  8  octagon  9  nonagon  10  decagon  11  undecagon  

100

12 dodecago

101

102

 

103

     

104

Simple  Polynomial  Multiplication  (page  1  of  3)  Sections:  Simple  multiplication,  "FOIL"  (and  a  warning),  General  multiplication  

105

There  were  two  formats  for  adding  and  subtracting  polynomials:  "horizontal"  and  "vertical".  You  can  use  those  same  two  formats  for  multiplying  polynomials.  The  very  simplest  case  for  polynomial  multiplication  is  the  product  of  two  one-­‐term  polynomials.  For  instance:  *  Simplify  (5x2)(–2x3)  I've  already  done  this  type  of  multiplication  when  I  was  first  learning  about  exponents,  negative  numbers,  and  variables.  I'll  just  apply  the  rules  I  already  know:  (5x2)(–2x3)  =  –10x5  The  next  step  up  in  complexity  is  a  one-­‐term  polynomial  times  a  multi-­‐term  polynomial.  For  example:  *  Simplify  –3x(4x2  –  x  +  10)  To  do  this,  I  have  to  distribute  the  –3x  through  the  parentheses:  –3x(4x2  –  x  +  10)  =  –3x(4x2)  –  3x(–x)  –  3x(10)  

106

=  –12x3  +  3x2  –  30x  The  next  step  up  is  a  two-­‐term  polynomial  times  a  two-­‐term  polynomial.  This  is  the  simplest  of  the  "multi-­‐term  times  multi-­‐term"  cases.  There  are  actually  three  ways  to  do  this.  Since  this  is  one  of  the  most  common  polynomial  multiplications  that  you  will  be  doing,  I'll  spend  a  fair  amount  of  time  on  this.  *  Simplify  (x  +  3)(x  +  2)  The  first  way  I  can  do  this  is  "horizontally";  in  this  case,  however,  I'll  have  to  distribute  twice,  taking  each  of  the  terms  in  the  first  parentheses  "through"  each  of  the  terms  in  the  second  parentheses:  Copyright  ©  Elizabeth  Stapel  2006-­‐2008  All  Rights  Reserved  (x  +  3)(x  +  2)  =  (x  +  3)(x)  +  (x  +  3)(2)  =  x(x)  +  3(x)  +  x(2)  +  3(2)  

107

=  x2  +  3x  +  2x  +  6  =  x2  +  5x  +  6  This  is  probably  the  most  difficult  and  error-­‐prone  way  to  do  this  multiplication.  The  "vertical"  method  is  much  simpler.  First,  think  back  to  when  you  were  first  learning  about  multiplication.  When  you  did  small  numbers,  it  was  simplest  to  work  horizontally,  as  I  did  in  the  first  two  polynomial  examples  above:  3  Å~  4  =  12  But  when  you  got  to  larger  numbers,  you  stacked  the  numbers  vertically  and,  working  from  right  to  left,  took  one  digit  at  a  time  from  the  lower  number  and  multiplied  it,  right  to  left,  across  the  top  number.  For  each  digit  in  the  lower  number,  you  formed  a  row  underneath,  stepping  the  rows  off  to  the  left  as  you  worked  from  digit  to  digit  in  the  lower  number.  Then  you  added  down.  For  instance,  you  would  probably  not  want  

108

to  try  to  multiply  121  by  32  horizontally,  but  it's  easy  when  you  do  it  vertically:  121  Å~  32  =  3872  You  can  multiply  polynomials  in  this  same  manner,  so  here's  the  same  exercise  as  above,  but  done  "vertically"  this  time:  *  Simplify  (x  +  3)(x  +  2)  I  need  to  be  sure  to  do  my  work  very  neatly.  I'll  set  up  the  multiplication:  multiplication  ...and  then  I'll  multiply:  multiplicationIf  you  want  to  use  FOIL,  that's  fine,  but  (warning!)  keep  its  restriction  in  mind:  you  can  ONLY  use  it  for  the  special  case  of  multiplying  two  binomials.  You  can  NOT  use  it  at  ANY  other  time!  *  Simplify  (x  –  4)(x  –  3)  multiplication  So  the  answer  is:  x2  –  7x  +  12  Using  FOIL  would  give:  

109

"first":  (x)(x)  =  x2  "outer":  (x)(–3)  =  –3x  "inner":  (–4)(x)  =  –4x  "last":  (–4)(–3)  =  +12  product:  (x2)  +  (–3x)  +  (–4x)  +  (+12)  =  x2  –  7x  +  12  *  Simplify  (x  –  3y)(x  +  y)  multiplication  So  the  answer  is:  x2  –  2xy  –  3y2  Using  FOIL  would  give:  "first":  (x)(x)  =  x2  "outer":  (x)(y)  =  xy  "inner":  (–3y)(x)  =  –3xy  "last":  (–3y)(y)  =  –3y2  product:  (x2)  +  (xy)  +  (–3xy)  +  (–3y2)  =  x2  –  2xy  –  3y2  Let  me  reiterate  what  I  said  at  the  beginning:  "FOIL"  works  ONLY  for  the  specific  and  special  case  of  a  two-­‐term  expression  times  another  two-­‐term  expression.  It  does  NOT  apply  in  ANY  other  caseA  figure  can  represent  

110

several  types  simultaneously  Lines  Adjacent  Ver  tex  Ray  Straight  line  180  degrees  Y  Longi  tude  Lines  Meridians  Ver  tical  0-­‐180  east  west  Up  down  X  Latitude  Lines  paral  lels  horizontal  N  nor  th  S  south  Left/  Right  N/S  0-­‐  90Lines  •  Copy  a  line  segment  •  Perpendicular  bisector  of  a  line  segment  •  Divide  a  line  segment  into  n  equal  segments  •  Perpendicular  to  a  line  at  a  point  on  the  line  •  Perpendicular  to  a  line  from  an  external  point  •  Perpendicular  to  a  ray  at  its  endpoint  •  A  parallel  to  a  line  through  a  point  Angles  •  Copy  an  angle  •  Bisect  an  angle  •  Construct  a  30°  angle

111

 •  Construct  a  45°  angle  •  Construct  a  60°  angle  •  Construct  a  90°  angle  (right  angle)  •  Constructing  75°  105°  120°  135°  150°  angles  and  more  An  obtuse  angle  is  one  which  is  more  than  

112

90°  but  less  thanType  of  Angle  Description  Acute  Angle  an  angle  that  is  less  than  90°  Right  Angle  an  angle  that  is  90°  exactly  Obtuse  Angle  an  angle  that  is  greater  than  90°  but  less  than  180°  6  Straight  Angle  an  angle  that  is  180°  exactl  y  Reflex  Angle  an  angle  that  is  greater  than  180°Like  terms  7ac  +  ac  =  8c  7ac  =-­‐  ac  =  6ac  4  apples  +  1  apple  =  5  apples  Cylinder  s  prism  Rectangles  plane  Two  dimensional  planes  Three  dimensional  prisms  1  dimensional  vec  tor  a  signed  number•  

113

114

Angles  associated  with  polygons  •  Exterior  angles  of  a  polygon  •  Interior  angles  of  a  polygon  •  Relationship  of  interior/exterior  angles  •  Polygon  central  angle  Named  polygons  •  Tetragon,  4  sides  Pentagon,  5  sides  •  Hexagon,  6  sides  •  Heptagon,  7  sides  •  Octagon,  8  sides  •  Nonagon  Enneagon,  9  sides  

115

•  Decagon,  10  sides  •  Undecagon,  11  sides  

Introduction:  Ks-­‐3  Geometry  is  a  construction  of  object  according  to  our  desired  given  measurement.  Ks-­‐3  Geometry  has  the  collection  of  object  it  should  be  triangle,  circle,  parallelogram,  etc.  Each  object  in  Ks-­‐3  geometry  has  some  properties.  The  topic  includes  in  Ks-­‐3  Geometry  is  2D  shapes,  3D  shapes,  Introduction  to  transformations,  Angles,  Polygons,  Symmetry,  Circles,  Pythagoras'  theorem  etc.  2D  and  3D  Geometry:  Two  dimensional:  These  shapes  are  always  flat  which  has  the  four  sides  and  four  corners.  There  are  different  kinds  of  quadrilaterals  are  square,  rhombus,  quadrilateral  etc.  Three  Dimensional:  3d  shapes  have  3-­‐dimensions  depth,  width  and  length.  The  important  shapes  in  3D  are  sphere,  cube,  cone,  cylinder  etc.  It  also  includes  Prisms  and  pyramids,  Polygon:  Polygons  are  the  2D  shapes.  It  has  sum  of  the  exterior  anglesare  360°.  

116

I  Two-­‐  and  Three-­‐Dimensional  Geometry  Essential  content  for  elementary  teachers  1.  Develop  an  understanding  of  basic  geometric  concepts  including:  point,  line,  plane,  space,  line  segment,  betweenness,  ray,  angle,  vertex,  parallelism,  perpendicularity,  congruency,  similarity,  simple  closed  curve,  Pythagorean  relationship.  2.  Identify  types  of  angles  including  acute,  right,  obtuse,  straight,  reflex,  vertical,  supplementary,  complementary,  corresponding,  alternate  interior,  and  alternate  exterior.  3.  Recognize  and  define  common  geometric  shapes.  1.  Two-­‐dimensional  geometric  shapes  1.  Triangles:  be  able  to  classify  by  sides  (equilateral,  scalene,  isosceles)  

117

and  classify  by  angle  (right,  acute,  obtuse)  2.  Quadrilaterals  (trapezoid,  parallelogram,  rectangle,  square,  rhombus,  kite):  identify  characteristics  and  relationships  among  these  shapes  3.  Polygons,  regular  polygons  4.  Circle  2.  Three-­‐dimensional  geometric  shapes  1.  Polyhedra  (prisms,  pyramids),  regular  polyhedra  (Platonic  solids):  connecting  polyhedra  to  polygons,  nets  2.  Cylinder,  cone,  sphere  Essential  content  for  students  K-­‐3  1.  Analyze  characteristics  and  properties  of  two-­‐  and  three-­‐dimensional  geometric  shapes  and  develop  mathematical  

118

arguments  about  geometric  relationships.8  1.  Two-­‐dimensional  geometric  shapes  1.  Recognize,  name,  build,  draw,  compare,  and  sort  shapes.  2.  Describe  attributes  and  parts  of  shapes:  circle,  rectangle,  square,  triangle,  parallelogram  (sides  and  vertices);  locate  interior  (inside)  and  exterior  outside)  angles.  3.  Compare  shapes  made  with  line  segments  (polygons)  and  identify  congruent  and  similar  geometric  shapes.  4.  Identify  right  angles  in  polygons.  5.  Investigate  and  predict  the  results  of  putting  together  and  taking  apart  shapes.  2.  Three-­‐dimensional  geometric  shapes  1.  Recognize,  name,  build,  draw,  compare,  and  sort  shapes:  sphere  (ball),  cone,  

119

cylinder  (can),  pyramid,  prism  (box),  cube.  2.  Describe  attributes  and  parts  of  shapes:  identify  faces,  edges,  vertices  (corners).  3.  Sort  using  similar  attributes  (curved  surfaces,  flat  surfaces).  4.  Investigate  and  predict  the  results  of  putting  together  and  taking  apart  shapes.  2.  Develop  vocabulary  and  concepts  related  to  two-­‐  and  three-­‐dimensional  geometric  shapes.  1.  Two-­‐dimensional  shapes:  angle,  circle,  congruency,  line  segment,  parallelogram,  polygon,  rectangle,  similarity,  square,  triangle  2.  Three-­‐dimensional  shapes:  cone,  cube,  cylinder,  edge,  face,  prism,  pyramid,  sphere,  vertices  Essential  content  for  students  grades  4-­‐5  1.  Maintain  and  expand  on  concepts  introduced  in  primary  grades.  2.  Analyze  characteristics  and  properties  of  

120

two-­‐  and  threedimensional  geometric  shapes  and  develop  mathematical  arguments  about  geometric  relationships.9  1.  Two-­‐dimensional  geometric  shapes  1.  Identify,  compare,  and  analyze  attributes  of  shapes,  and  develop  vocabulary  to  describe  the  attributes.  1.  Angles  (right,  acute,  obtuse,  straight)  2.  Circles  (diameter,  radius,  center,  arc,  circumference)  3.  Lines  (parallel,  intersecting,  perpendicular)  4.  Line  segments  5.  Polygons  (vertex,  side,  diagonal,  perimeter);  classification  by  number  of  sides  (quadrilaterals,  pentagon,  hexagon)  2.  Classify  shapes  according  to  their  properties.  1.  Triangles  (classify  by  angles  and  sides)  

121

2.  Quadrilaterals  (square,  rectangle,  parallelogram,  rhombus,  trapezoid,  kite)  3.  Investigate,  describe,  and  reason  about  the  results  of  subdividing,  combining,  and  transforming  shapes.  4.  Explore  and  identify  congruence  and  similarity.  5.  Make  and  test  conjectures  about  geometric  properties  and  relationships  and  develop  logical  arguments  to  justify  conclusions.  2.  Three-­‐dimensional  geometric  shapes  1.  Identify  shapes  (cylinder,  cone,  sphere,  pyramid,  prism).  2.  Apply  terms  (face,  edge,  vertex).  3.  Classify  shapes  according  to  their  properties  and  develop  definitions  of  classes  of  shapes  such  as  triangles  and  pyramids.  4.  Investigate,  describe,  and  reason  about  the  results  of  subdividing,  combining,  

122

and  transforming  shapes.  • Dodecagon, 12 sides

Recommended