Magnetic effects on free convection flow of Nano fluids

Preview:

Citation preview

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

1

Magnetic effects on free convection flow of Nano fluids through porous

medium past an infinite vertical plate in slip flow regime in the presence of

variable heat source and variable suction

Dr Rajendra Kumar Dhal

*Dr Banamali Jena

**Mr P M Sreekumar

J.N.V. Hadgarh, Keonjhar, Odisha- 758023

Email: dhal.rajendra@gmail.com

*J.N.V. Goshala, Sambalpur, Odisha- 768024

Email:banamalijena@rediffmail.com

**J.N.V. Joura, Morena, MP-476221

Email:pmsreekumar63@gmail.com

ABSTRACT: Magnetic effects on free convection flow of nano fluid through porous medium

past an infinite vertical plate in slip flow regime in the presence of both variable heat source

and variable suction for water- Cu and water - Al2O3 has been studied. The influences of the

various parameters on the flow field, Heat field, mean value of skin friction and tangential

value of phase angle are extensively discussed from graphs and tables.

KEY WORDS: MHD, Free convection, Heat Transfer, variable Heat Source, slip flow regime,

variable Suction, nano fluid, porous medium.

1.INTRODUCTION: Free convection fluids like oil, water and ethylene glycol have poor heat

transfer capacity due to their poor thermal conductivity. To enhance the thermal conductivity of

these fluids, investigatorshave added nano particles (nano size) of base metals (Al, Cu), Oxides

(Al2O3, TiO2), Nitriles (AlN, SiN) and Carbides (SiC), etc. to base fluids. Thus the convective

heat transfer of the base liquids will increase. Nano fluids contribute to lower heat exchanger

size because of their thermal and flow characteristics. Hence, nano fluids are used in

microelectronics and in chips of computer devices.Nano fluids in the presence or absence of

magnetic field have enumerable applications in the industries due to unique chemical and

physical properties of nanometer sized materials. Sundry utilizations of nano fluids, the cooling

applications of nano fluids incorporate silcon mirror cooling, electronics cooling, vehicle

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

2

cooling, transformer cooling and so on, are some bright instances. The hypothesis of nano fluid

was first presented by S. U. S. Choi and has been a field of dynamic research area for two

decades. Choi et. al. [1] has demonstrated experimentally that the injection of nano particles

enhances the themal conductivity of the fluid. Buongiorno [2] developed a mathematical model

for nanofluid and explored its various transport mechanisms of nano fluids. Mahian et. al. [3]

have discussed the irreversible analysis of the vertical annulus using water-TiO2 fluid with

MHD flow effects. Shehzad et. al. [4] have studied the MHD mixed convective peristaltic

motion of nano fluid with joule heating and thermophoresis effects. Venkataramanaiah et. al.

[5] have clarified about the nano particles effect on MHD boundary layer flow of Williamson

fluid over a stretching sheet. Zubair et. al. [6] have discussed the Heat and Mass Transfer

analysis of MHD Nano fluid flow with Radiative Heat Effects in the presence of Spherical Au-

Metallic Nano particles.Khan et. al. [7] have discoursed about the MHD Williamson nano fluid

with chemical reaction. Thumma et. al. [8] have investigated about the numerical study of heat

source on dissipative magnetic nano fluid flow from a non linear inclined stretching surface.

Vedavathi et. al. [9] have discussed on heat transfer on MHD nano fluid flow over a semi

infinite flat plate embedded in a porous medium with radiation absorption, heat source and

diffusion thermo effect. Mohyud-Din et. al. [10] have presented a study of heat and mass

transfer on magnetohydrodynamic (MHD) flow of nano particles. D Vidyanandha Babu [11]

has studied the effect of Dufour and thermal radiation on convection radiative nano fluid flow

with suction and heat source. Govardhan et. al. [12] have studied on Heat and Mass transfer in

MHD Nano fluid over a STretching Surface along with Viscous Dissipation effect.

In this problem, we try to investigate the Magnetic effects on free convection flow of nano fluid

through porous medium past an infinite vertical plate in slip flow regime in the presence of

variable heat source and variable suction both for water-Cu and Water-Al2O3.

2. FORMULATION OF PROBLEM: An unsteady free convection two dimensional flow of an

incompressible, electrically conducting viscous nano fluid through porous medium past an

infinite vertical plate in slip flow regime in the presence of chemical reaction, variable heat

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

3

source and variable suction is considered. Let ๐‘‹โ€ฒ axis is taken along the plate in vertical upward

direction and ๐‘Œโ€ฒ axis is normal to the plate. A uniform magnetic field strength H0 is applied

normal to the plate. Initially, sorrounding temperature is ๐‘‡โˆžโ€ฒ . Also, the temperature at the plate

is ๐‘‡๐‘คโ€ฒ . For ๐‘ก โ€ฒ โ‰ฅ 0, the temperature and mass concentration changes periodically. As the plate is

infinite along ๐‘‹โ€ฒ axis, so all the physical quantities are in dependentof ๐‘ฅโ€ฒ and are the functions

of ๐‘ฆโ€ฒ and ๐‘ก โ€ฒonly. It is assumed that viscous dissipation and joulean dissipation are neglected,

density varies in the body force term and variable heat source is taken as ๐‘ฃ0

2

๐œˆ๐‘“ 1 + ๐œ–๐ต๐‘’๐‘–๐œ” โ€ฒ ๐‘ก โ€ฒ

.

Then by usual Boussinesq's approximation the unsteady flow is governed by the following

equations.

Equation of Continuity:

๐œ•๐‘ฃ โ€ฒ

๐œ•๐‘ฆ โ€ฒ= 0 โŸน ๐‘ฃ โ€ฒ = โˆ’๐‘‰0 1 + ๐œ–๐ด๐‘’๐‘–๐œ” โ€ฒ๐‘ก โ€ฒ (1)

The Equation of Motion:

๐œ•๐‘ข โ€ฒ

๐œ•๐‘ก โ€ฒโˆ’ ๐‘‰0 1 + ๐œ–๐ด๐‘’๐‘–๐œ” โ€ฒ๐‘ก โ€ฒ

๐œ•๐‘ข โ€ฒ

๐œ•๐‘ฆ โ€ฒ=

๐œ‡๐‘›๐‘“

๐œŒ๐‘›๐‘“

๐œ•2๐‘ข โ€ฒ

๐œ•๐‘ฆ โ€ฒ2 + ๐‘” ๐›ฝ ๐‘›๐‘“ ๐‘‡ โ€ฒ โˆ’ ๐‘‡โˆžโ€ฒ + ๐‘” ๐›ฝ๐‘ ๐‘›๐‘“ ๐ถ โ€ฒ โˆ’ ๐ถโˆž

โ€ฒ โˆ’๐œŽ๐ต0

2๐‘ข โ€ฒ

๐œŒ๐‘›๐‘“โˆ’

๐‘ข โ€ฒ

๐พโ€ฒ(2)

The Energy Equation:

๐œ•๐‘‡ โ€ฒ

๐œ•๐‘ก โ€ฒโˆ’ ๐‘‰0 1 + ๐œ–๐ด๐‘’๐‘–๐œ” โ€ฒ๐‘ก โ€ฒ

๐œ•๐‘‡ โ€ฒ

๐œ•๐‘ฆ โ€ฒ=

๐‘˜๐‘›๐‘“

๐œŒ๐ถ๐‘ ๐‘›๐‘“

๐œ•2๐‘‡โ€ฒ

๐œ•๐‘ฆ โ€ฒ2โˆ’

๐‘‰02

๐œˆ๐‘“ 1 + ๐œ–๐ต๐‘’๐‘–๐œ” โ€ฒ๐‘ก โ€ฒ ๐‘‡ โ€ฒ โˆ’ ๐‘‡โˆž

โ€ฒ (3)

with the following boundary conditions

๐‘ก > 0: ๐‘ขโ€ฒ = ๐ฟโ€ฒ

๐œ•๐‘ข โ€ฒ

๐œ•๐‘ฆ โ€ฒ, ๐‘‡ โ€ฒ = ๐‘‡๐‘ค

โ€ฒ + ๐œ– ๐‘‡๐‘คโ€ฒ โˆ’ ๐‘‡โˆž

โ€ฒ ๐‘’๐‘–๐œ” โ€ฒ๐‘กโ€ฒ๐‘Ž๐‘ก๐‘ฆ = 0,

๐‘ขโ€ฒ = 0 , ๐‘‡ โ€ฒ = ๐‘‡โˆžโ€ฒ ๐‘Ž๐‘ก๐‘ฆ โ†’ โˆž

(4)

where ๐œ‡๐‘›๐‘“ is the dynamic viscosity,๐‘˜๐‘›๐‘“ is the thermal diffusivity,๐œŒ๐‘›๐‘“ is the effective density,

๐œŒ๐ถ๐‘ ๐‘›๐‘“

is the heat capacity and ๐›ฝ ๐‘›๐‘“ is the coefficient of volumetric expansion of heat of nano

fluid. They are defind as

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

4

๐œ‡๐‘›๐‘“ =๐œ‡๐‘“

1โˆ’๐œ™ 2.5 ,๐œŒ๐‘›๐‘“ = 1 โˆ’ ๐œ™ ๐œŒ๐‘“ + ๐œ™๐œŒ๐‘  , ๐œŒ๐ถ๐‘ ๐‘›๐‘“

= 1 โˆ’ ๐œ™ ๐œŒ๐ถ๐‘ ๐‘“

+ ๐œ™ ๐œŒ๐ถ๐‘ ๐‘ ,

๐‘˜๐‘›๐‘“ = ๐‘˜๐‘  + 2๐‘˜๐‘“ โˆ’ 2๐œ™ ๐‘˜๐‘“ โˆ’ ๐‘˜๐‘ 

๐‘˜๐‘  + 2๐‘˜๐‘“ + 2๐œ™ ๐‘˜๐‘“ โˆ’ ๐‘˜๐‘  ๐‘˜๐‘“ , ๐›ฝ ๐‘›๐‘“ = 1 โˆ’ ๐œ™ ๐›ฝ ๐‘“ + ๐œ™ ๐›ฝ ๐‘ 

๐œŽ is the electrical conductivity of the fluid, g is the acceleration due to gravity and ๐œ™is the

volume of nano fluid.

Let us introduce the dimensionless quantities

๐‘ข =

๐‘ข โ€ฒ

๐‘‰0 , ๐‘ก =

๐‘‰02๐‘ก โ€ฒ

๐œ๐‘“ , ๐‘ฆ =

๐‘‰0๐‘ฆ โ€ฒ

๐œ๐‘“ , ๐œƒ =

๐‘‡ โ€ฒโˆ’๐‘‡โˆžโ€ฒ

๐‘‡๐‘คโ€ฒ โˆ’๐‘‡โˆž

โ€ฒ , ๐บ๐‘Ÿ =๐‘” ๐›ฝ ๐‘“๐œ๐‘“ ๐‘‡๐‘ค

โ€ฒ โˆ’๐‘‡โˆžโ€ฒ

๐‘‰03 ,

๐‘ƒ๐‘Ÿ =๐œˆ๐‘“ ๐œŒ๐ถ๐‘

๐‘“

๐‘˜๐‘“ , ๐‘€ =

๐œŽ๐œˆ๐‘“๐ต02

๐œŒ๐‘“๐‘‰02 , ๐œ” =

๐œ” โ€ฒ

๐‘‰03 ๐œ๐‘“ , ๐พ =

๐พโ€ฒ๐‘‰02

๐œˆ๐‘“ , ๐‘• =

๐‘‰0๐ฟโ€ฒ

๐œˆ๐‘“

(5)

where Gr is the Grashof number, K is permeability of porous medium, M is magnetic

parameter, Pr is Prandtl number, h is rarefraction parameter, A is suction parameter and B is

heat source parameter.

Substituting equation (5) in equations (2) to (3) with boundary condition (4), we have

๐œ•๐‘ข

๐œ•๐‘กโˆ’ 1 + ๐œ–๐ด๐‘’๐‘–๐œ”๐‘ก

๐œ•๐‘ข

๐œ•๐‘ฆ= ๐œ™0

๐œ•2๐‘ข

๐œ•๐‘ฆ 2 โˆ’ ๐œ™1๐‘€๐‘ข โˆ’1

๐พ๐‘ข + ๐œ™2๐บ๐‘Ÿ๐œƒ(6)

๐œ•๐œƒ

๐œ•๐‘กโˆ’ 1 + ๐œ–๐ด๐‘’๐‘–๐œ”๐‘ก

๐œ•๐œƒ

๐œ•๐‘ฆ=

1

๐‘ƒ๐‘Ÿ๐œ™3

๐œ•2๐œƒ

๐œ•๐‘ฆ 2 โˆ’ 1 + ๐œ–๐ต๐‘’๐‘–๐œ”๐‘ก ๐œƒ (7)

with boundary conditions

๐‘ข = hโˆ‚u

โˆ‚y, ๐œƒ = 1 + ๐œ–๐‘’๐‘–๐œ”๐‘ก at ๐‘ฆ = 0

๐‘ข = 0, ๐œƒ โ†’ 0, as๐‘ฆ โ†’ โˆž (8)

3. METHOD OF SOLUTION:

Assuming small amplitude oscillation๐œ– โ‰ช 1, we can represent the velocity u and temperature

๐œƒnear the plate as follows

๐‘ข = ๐‘ข0 ๐‘ฆ + ๐œ–๐‘ข1 ๐‘ฆ ๐‘’๐‘–๐œ”๐‘ก

๐œฝ = ๐œฝ๐ŸŽ ๐’š + ๐๐œฝ๐Ÿ ๐’š ๐’†๐’Š๐Ž๐’• (9)

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

5

Substituting (9) in (6) to (8) and equating the coefficient of harmonic and non harmonic terms

with neglecting the coefficient of ๐œ–2, we get

๐œ‘0 ๐‘ข0โ€ฒโ€ฒ + ๐‘ข0

โ€ฒ โˆ’ ๐œ‘1๐‘€ + 1

๐พ ๐‘ข0 = โˆ’๐บ๐‘Ÿ๐œ‘2๐œƒ0 (10)

๐œ‘0๐‘ข1โ€ฒโ€ฒ + ๐‘ข1

โ€ฒ โˆ’ ๐‘–๐œ” + ๐œ‘1๐‘€ + 1

๐พ ๐‘ข1 = โˆ’๐‘ข0

โ€ฒ ๐ด โˆ’ ๐บ๐‘Ÿ๐œ‘2๐œƒ1 (11)

๐œ‘3๐œƒ0โ€ฒโ€ฒ + ๐‘ƒ๐‘Ÿ๐œƒ0

โ€ฒ โˆ’ ๐‘ƒ๐‘Ÿ๐œƒ0 = 0 (12)

๐œ‘3๐œƒ1โ€ฒโ€ฒ + ๐‘ƒ๐‘Ÿ๐œƒ1

โ€ฒ โˆ’ ๐‘ƒ๐‘Ÿ 1 + ๐‘–๐œ” ๐œƒ1 = ๐‘ƒ๐‘Ÿ๐ต๐œƒ0 โˆ’ ๐‘ƒ๐‘Ÿ๐ด๐œƒ0โ€ฒ (13)

with the following boundary conditions

๐‘ข0 = hโˆ‚u0

โˆ‚y, ๐‘ข1 = h

โˆ‚u1

โˆ‚y, ๐œƒ0 = 1, ๐œƒ1 = 1 at ๐‘ฆ = 0

๐‘ข0 = 0, ๐‘ข1 = 0, ๐œƒ0 = 0, ๐œƒ1 = 0 at๐‘ฆ โ†’ โˆž (14)

Solving the equations (10) to (13) using boundary condition (14) and (9), we get

u = b2 eโˆ’a2y โˆ’ b1 e

โˆ’a1y + b8eโˆ’a4y + b5eโˆ’a2y + b6eโˆ’a1y + b7 eโˆ’a3y ฯตeiฯ‰t (15)

ฮธ = eโˆ’a1y + b4eโˆ’a3y + b3eโˆ’a1y ฯตeiฯ‰t (16) The non-

dimensional skin friction

๐œ0 = ๐œ•๐‘ข

๐œ•๐‘ฆ

๐‘ฆ=0

= โˆ’๐‘Ž2๐‘2 + ๐‘Ž1๐‘1 + โˆ’๐‘Ž4๐‘8 โˆ’ ๐‘Ž2๐‘5 โˆ’ ๐‘Ž1๐‘6 โˆ’ ๐‘Ž3๐‘7 ๐œ–๐‘’๐‘–๐œ”๐‘ก

= โˆ’๐‘Ž2๐‘2 + ๐‘Ž1๐‘1 + ๐œ–๐‘’๐‘–๐œ”๐‘ก ๐น๐‘Ÿ + ๐‘–๐น๐‘– = ๐œ๐‘š + ๐œ– ๐น ๐‘’๐‘– ๐œ”๐‘ก +๐›ผ (17)

where ๐น = ๐น๐‘Ÿ2 + ๐น๐‘–

2 , ๐‘ก๐‘Ž๐‘›๐›ผ =๐น๐‘–

๐น๐‘Ÿ , ๐œ๐‘š = โˆ’๐‘Ž2๐‘2 + ๐‘Ž1๐‘1 Is the skin friction of mean velocity

and F= โˆ’๐‘Ž4๐‘8 โˆ’ ๐‘Ž2๐‘5 โˆ’ ๐‘Ž1๐‘6 โˆ’ ๐‘Ž3๐‘7

The non-dimensional Nusselt number

๐‘๐‘ข = โˆ’ ๐œ•๐œƒ

๐œ•๐‘ฆ

๐‘ฆ=0

= ๐‘Ž1 + ๐‘Ž3๐‘4 + ๐‘Ž1๐‘3 ๐œ–๐‘’๐‘–๐œ”๐‘ก = ๐‘Ž1 + ๐œ–๐‘’๐‘–๐œ”๐‘ก ๐‘†1 + ๐‘–๐‘†2

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

6

=๐‘Ž1 + ๐‘„ ๐œ–๐‘’๐‘– ๐œ”๐‘ก +๐›ฝ (18)

where ๐‘„ = ๐‘†12 + ๐‘†2

2๐‘ก๐‘Ž๐‘›๐›ฝ =๐‘†2

๐‘†1, ฯ•

0=

1

1โˆ’ฯ• 2.5 1โˆ’ฯ• +ฯ•ฯsฯf

, ฯ•1

=1

1โˆ’ฯ• +ฯ•ฯsฯf

,

๐œ™2 = 1 โˆ’ ฯ• + ฯ•ฮฒs

ฮฒf

, ๐œ™3 = ๐‘˜๐‘ +2๐‘˜๐‘“โˆ’2๐œ™ ๐‘˜๐‘“โˆ’๐‘˜๐‘ 

๐‘˜๐‘ +2๐‘˜๐‘“+2๐œ™ ๐‘˜๐‘“โˆ’๐‘˜๐‘ 

1โˆ’๐œ™ +๐œ™ ๐œŒ๐ถ๐‘

๐‘  ๐œŒ๐ถ๐‘

๐‘“

,

๐‘Ž1 =๐‘ƒ๐‘Ÿ+ ๐‘๐‘Ÿ 2+4๐œ‘3๐‘ƒ๐‘Ÿ

2๐œ‘3, ๐‘Ž2 =

1+ 1+4๐œ‘0 ๐œ‘1๐‘€+ 1

๐พ

2๐œ‘0 , ๐‘Ž3 =

๐‘ƒ๐‘Ÿ+ ๐‘ƒ๐‘Ÿ2+4๐‘ƒ๐‘Ÿ๐œ‘3 1+๐‘–๐œ”

2๐œ‘3,

๐‘Ž4 =1 + 1 + 4 ๐œ‘0 ๐œ”๐‘– + ๐œ‘1๐‘€ +

1

๐พ

2๐œ‘0 , ๐‘1 =

๐‘Ž1๐บ๐‘Ÿ

๐œ‘0๐‘Ž12 โˆ’ ๐‘Ž1 โˆ’ ๐œ”๐œ‘1๐‘€ +

1

๐พ

, ๐‘2

=๐‘1 1 + ๐‘•๐‘Ž1

1 + ๐‘•๐‘Ž2, ๐‘3 =

๐‘ƒ๐‘Ÿ๐ต + ๐‘ƒ๐‘Ÿ๐ด๐‘Ž1

๐œ‘3๐‘Ž12 โˆ’ ๐‘ƒ๐‘Ÿ๐‘Ž1 โˆ’ ๐‘ƒ๐‘Ÿ 1 + ๐‘–๐œ”

,

๐‘4 = โˆ’๐‘3, ๐‘5 =๐ด๐‘2

๐œ‘0๐‘Ž22 โˆ’ ๐‘Ž2 โˆ’ ๐œ”๐‘– + ๐œ‘1๐‘€ +

1

๐พ

, ๐‘6 = โˆ’ ๐ด๐‘1๐‘Ž2 + ๐บ๐‘Ÿ๐œ‘2

๐œ‘0๐‘Ž12 โˆ’ ๐‘Ž1 โˆ’ ๐œ”๐‘– + ๐œ‘1๐‘€ +

1

๐พ

,

๐‘7 = โˆ’๐บ๐‘Ÿ๐œ‘2๐‘4

๐œ‘0๐‘Ž32 โˆ’ ๐‘Ž3 โˆ’ ๐œ”๐‘– + ๐œ‘1๐‘€ +

1

๐พ

, ๐‘8 = โˆ’ ๐‘•๐‘Ž3๐‘5 + ๐‘•๐‘Ž1๐‘6 + ๐‘•๐‘Ž3๐‘7 + ๐‘5 + ๐‘6 + ๐‘7

1 + ๐‘•๐‘Ž4

4. RESULT AND DISCUSSION:

In this paper, Magnetic effects on free convection flow of nano fluid through porous medium

past an infinite vertical plate in slip flow regime in the presence of variable heat source and

variable suction has been compared between water-Cu and water-Al2O3. The effect of the

parameters Gr, M, K, Pr, A, B, ๐œ‘ and h on flow characteristics have been studied and shown by

means of graphs and tables. In order to have physical correlation, we choose suitable values of

flow parameters and values of parameters for two different nano fluids in table-1. The graph of

heat and velocities are taken w.r.t. to distance y. The mean value of shearing stress and tangent

value of phase angle are shown in table.

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

7

Velocity Profile: The velocity profiles are depicted in Fig 1-7. Figure-1 shows the effects of the

parameter M on velocity profile at any point of the fluid when Pr = 6.86, K = 2, A = 2, B = 2,

Gr = 2, t = 0.5, ฯ† = 0.05and h = 0.2. It is noticed that the velocity decreases with the increase

of Magnetic parameter (M). Initially, the velocity of water-Cu nano fluid is more than the

water-Al2O3 nano fluid.

Figure-(2) shows the effects of the parameter K on velocity profile at any point of the fluid

when Pr = 6.86, M = 2, A = 2, B = 2, Gr = 2, t = 0.5, ฯ† = 0.05and h = 0.2. It is noticed that the

velocity increases with the increase of permeability of porous medium (K). Initially the velocity

of water-Cu nano fluid is more than water-Al2O3 nano fluid.

Figure-(3) shows the effect of the parameter Gr on velocity profile at any point of the fluid

when Pr = 6.68, M = 2, A = 2, B = 2, K = 2, t = 0.5,ฯ† = 0.05and h = 0.2. It is noticed that the

velocity increases with the increase of Grashof number (Gr).

Figure-(4) shows the effect of the parameter A on velocity profile at any point of the fluid,

when Pr = 6.86, M = 2, K = 2, B = 2, Gr = 2, t = 0.5,ฯ† = 0.05and h = 0.2. It is noticed that the

velocity increases with the increase of Suction parameter (A). Initially, the velocity of water-Cu

nano fluid is more than water-Al2O3 nano fluid.

Figure-(5) shows the effect of the parameter๐œ‘ on velocity profile at any point of the fluid, when

Pr = 6.86, M = 2, K = 2, A = 2, B = 2, Gr = 2, t = 0.5 and h = 0.2. It is noticed that the velocity

increases with the increase of volume fraction of nano fluid ๐œ‘ . The velocity of water-Cu nano

fluid is more than water-Al2O3 nano fluid near the plate.

Figure-(6) shows the effect of the parameter h on velocity profile at any point of the fluid, when

Pr = 6.86, M = 2, K = 2, A = 2, B = 2, Gr = 2, t = 0.5 and ฯ† = 0.05.It is noticed that the

velocity increases with the increase of rarefaction parameter (h). The velocity of water-Cu nano

fliuid is more than water-Al2O3 nano fluid near the plate.

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

8

Figure-(7) shows the effect of the parameter B on velocity profile at any point of the fluid,

when Pr = 6.86, M = 2, K = 2, A = 2, Gr = 2, t = 0.5, ๐œ‘ = 0.05, and h = 0.2. It is noticed that

the velocity increases slowly with the increase of Source parameter (B). The velocity of water-

Cu nano fluid is more than water-Al2O3 nano fluid near the plate.

Heat Profile: The heat profiles are depicted in Fig 8-10. Figure-(8) shows the effect of the

parameter B on heat profile at any point of the fluid, when Pr = 6.86, A = 2, t = 0.5 and ๐œ‘ =

0.05. It is noticed that the temperature slowly rises in the increase of heat source (B).The heat

of water-Cu nano fluid is less than the water- Al2O3 at every point of the flow field.

Figure-(9) shows the effect of the parameter A on heat profile at any point of the fluid, when Pr

= 6.86, B = 2, t = 0.5 and ๐œ‘ = 0.05. It is noticed that the temperature slowly falls with the

increase of Suction Parameter (A). The heat of water-Cu nano fluid is less than water-Al2O3

nano fluid at every point of the flow field.

Figure-(10) shows the effect of the parameter ๐œ‘ on heat profile at any point of the fluid, when

Pr = 6.86, A = 2, B = 2. It is noticed that the temperature rises with the increase of heat source

(B). The heat of water-Cu nano fluid is less than water-Al2O3 nano fluid at every point of the

flow field, but the rate of rise of heat of water-Cu nano fluid is more than water-Al2O3nano

fluid.

Skin Friction: The mean value of shearing stress and Tangent value of phase angle is depicted

in Table-(2), which illustrates the effects of the parameters M, K, Gr, A, h and ๐œ‘ on mean value

of shearing stress and Tangent value of phase angle at the plate. It is noticed that Mean value of

skin friction at plate decreases with the increase of magnetic parameter (M), Suction parameter

(A) and rarefaction parameter (h), where as decreases with the increase of permeability of

porous medium (K), Grashof number (Gr) and volume fraction of nano fluid ๐œ‘ . But the

Tangent value of phase angle increases with the increase of volume fraction of nano fluid ๐œ‘ ,

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

9

magnetic parameter (M) and Suction parameter (A), where as decreases with the increase of

permeability of porous medium (K) and rarefaction parameter (h).

Table-1

Sl.no parameters Base fluid

(water)

Nano

particles

( Cu)

Nano

particles

(Al2O3

1 Density 997.1 8933 3970

2 Specific heat at

constant

pressure

4179 386 765

3 coefficient of

volumetric

expansion

2.064X10โˆ’4 9.8X10โˆ’6 8.5X10โˆ’6

4 Thermal

diffusivity

0.613 401 40

Table-2

When B=2 and Sc=6.8 Mean value of

shearing

stress ๐œ๐‘š

For

Al2 O3 -water

Mean value

of shearing

stress ๐œ๐‘š

Cu-Water

Tangent

value of

phase

angle

๐‘ก๐‘Ž๐‘›๐›ผ

Cu-Water

Tangent

value of

phase

angle

๐‘ก๐‘Ž๐‘›๐›ผ

Al2 O3 -

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

10

water

Initially

h=0.2,M=5,K=2,A

=2, Gr=2,๐œ‘ =

0.05

M=5 1.1026 1.3481 0.1581 0.1402

M=7 1.0188 1.2384 0.1629 0.1414

M=8 0.9530 1.1920 0.1653 0.1428

K=3 1.1433 1.3946 0.1544 0.1365

K=5 1.2124 1.4658 0.1482 0.1296

A=4 1.1026 1.3456 0.3022 0.2645

A=6 1.1026 1.3419 0.4469 0.3893

Gr=4 2.2053 2.6965 0.1581 0.1402

Gr=6 3.3079 4.0451 0.1581 0.1402

h=0.4 0.8162 0.9631 0.1616 0.1467

H=0.6 0.6479 0.7474 0.1641 0.1411

๐œ‘

= 0.09

1.1059 1.3759 0.1636 0.1439

๐œ‘

= 0.1

1.1084 1.4616 0.1691 0.1476

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

11

Fig-(1): Effect of M on Velocity profile for water-Cu and water-Al2O3nano fluid, when Pr

= 6.86, K = 2, A = 2, B = 2, Gr = 2, t = 0.5, ๐‹ = 0.05 and h = 0.2.

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

12

Fig-(2): Effect of K on Velocity profile for water-Cu and water-Al2O3 nano fluid, when Pr

= 6.86, M= 2, A = 2, B = 2, Gr = 2, t = 0.5, ๐‹ = 0.05 and h = 0.2.

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

13

Fig-(3): Effect of Gr on Velocity profile of water-Cu and water-Al2O3 nano fluid, when Pr

= 6.86, K = 2, M = 2, A = 2, B = 2, t = 0.5, ๐‹ = 0.05 and h = 0.2.

Fig-(4): Effect of A on velocity profile of water-Cu and water-Al2O3 nano fluid, when Pr =

6.86, M = 2, K = 2, B = 2, Gr = 2, t = 0.5, ๐‹ = 0.05 and h = 0.2.

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

14

Fig-(5): Effect of ๐‹ on Velocity profile of water-Cu and water-Al2O3 nano fluid, when Pr

= 6.86, M = 2, K = 2, A = 2, B = 2, Gr = 2, t = 0.5 and h = 0.2.

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

15

Fig-(6): Effect of h on Velocity profile of water-Cu and water-Al2O3 nano fluid, Pr =

6.86, M = 2, K = 2, A = 2, B = 2, Gr = 2, t = 0.5 and ๐‹ = 0.05.

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

16

Fig-(7): Effect of B on Velocity profile of water-Cu and water-Al2O3 nano fluid, when Pr =

6.86, M = 2, K = 2, A = 2, Gr = 2, t = 0.5, ๐‹ = 0.05 and h = 0.2.

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

17

Fig-(8): Effect B on Heat profile of water-Cu and water-Al2O3 nano fluid, when Pr = 6.86,

A = 2, t = 0.5 and ๐‹ =0.05.

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

18

Fig-(9): Effect of A on Heat profile for water-Cu and water-Al2O3 nano fluid, when Pr =

6.86, B = 2, t = 0.5 and ๐‹ = 0.05.

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

19

Fig-(10): Effect of ๐‹ on Heat profile of water-Cu and water-Al2O3 nano fluid, when Pr =

6.86, B = 2, t = 0.5 and A = 2.

6. CONCLUSION:

The following results are obtained due to the magnetic effects on free convection flow of nano

fluid through porous medium past an infinite vertical plate in slip flow regime in the presence

of variable heat source and variable suction:

i. The velocities of both water-Cu and water-Al2O3 nano fluids decrease with the increase

in M, but increases with the increase of other parameters. Also velocity of water-Cu nano

fluid is more than the water-Al2O3 nano fluid near the plate.

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

20

ii. Heat diminishes with the enhancement of the value of suction parameter (A), but rises

with the increase of B and ๐œ‘.

iii. Mean value of Skin friction at the plate decreases with the increase of M, A and h, where

as increases with the increase of K, Gr and ๐œ‘. But the tangent value of phase angle

increases with the increase of ๐œ‘, M and A, where as decreases with the increase of K and

h. No change is marked in case of increase in Gr.

iv. Both mean value of Skin friction and tangent value of phase angle is more in case of

water-Cu nano fluid than water-Al2O3 nano fluid for all parameters.

Reference

1. Choi, S.U.S.and Eastman, J.A., "Enhancing thermal conductivity of fluids with nano

particles", In Proceedings of the ASME International Mechanical Engineering

Congress and exposition, San Franscisco, USA, ASME, FED 231/MD, 66, 99-105,

1995.

2. Buongiorno, J., "Convective transport in nano fluid", Journal of Heat Transfer, 128

(3), 240-250, 2006.

3. Mahian,O., Pop, I., Sahin, A. Z., Oztop, H. F., Wongwises, S., "Irreversibility

analysis of a vertical annulus using TiO2 / water nano fluid with MHD flow effects",

Int. J. Heat Mass Transfer, 64, 671-679, 2013.

4. Shehzad S A, Abbasi F M, Hayat T, Alsaedi F, "MHD mixed convective peristaltic

motion of nano fluid with joule heating and thermophoresis effects", PLoS One 9(11):

e111417,2014.

5. Venkataramanaiah G, Sreedhar Babu M, Lavanya M, "Heat Generation / Absorption

Effects on Magneto-Williamson Nano Fluid flow with Heat and Mass Fluxes",

International Journal of engineering development and research, 4(1), 384-397, ISSN:

2321-9939, 2016.

6. Zubair M, Quresh A, Rubbab Q, Irshad S, Ahmad S and Aqeel M, "Heat and Mass

Transfer Analysis of MHD Nano fluid Flow with Radiative Heat Effects in the

Presence of Spherical Au-Metallic Nanoparticles", Nanoscale Research Letters, DOI

10.1186/s11671-016-1692-2, 2016.

7. Khan M, Malik M Y, Salahuddin T, Rehman K U, Naseer M, Khan I, " MHD flow of

Williamson nano fluid over a cone and plate with chemical reactive species", J. Mole.

Liq. 231, 580-588, 2017.

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org

Vol. 11 Issue 05, May-2021 ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196 |

International Journal of Research in Engineering & Applied Sciences

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

An open access scholarly, online, peer-reviewed, interdisciplinary, monthly, and fully refereed journals

21

8. Thumma T, Anwar Beg O, Kadir A, "Numerical study of heat source / sink ,effects

on dissipative magnetic nano fluid flow from a nonlinear inclined stretching /

shrinking sheet", J. Mole. Liquids, 232, 159-173, 2017.

9. Vedavathi, N., Dharmaiah, G., Balamurugan, K. S., and Prakash, J., "Heat Transfer

on MHD Nano fluid flow over a semi infinite flat plate embedded in a porous

medium with radiation absorption, Heat source and Diffusion Thermo Effect",

FHMT, 9, 38, 2017.

10. Syed Tauseef Mhyud-Din, Umar Khan, Naveed Ahmed, Muhammad Mehdi Rashidi,

"A study of heat and mass transfer on magnetohydrodynamic (MHD) flow of nano

particles", Propulsion and Power Research, 7(1): 72-77, 2018.

11. Dr D Vidyanandha Babu,"Effect of Dufour and thjermal radiation on convection

radiative nano fluid flow with suction and heat source", Compliance Engineering

Journal, vol 10, Issue 11, p 179-184, 2019.

12. K Govardhan, G Narender and G Sreedhar Sarma, " Heat and Mass transfer in MHD

Nano fluid over a Strtching Surface along with Viscous Dissipation Effect" IJMEMS,

vol. 5, No. 2, 343-352, 2020.

Recommended