Luhman’16AB · Wavelength (!m) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Absolute F (10 h-17 erg/cm 2 /s/!...

Preview:

Citation preview

Luhman  16AB:  A  Remarkable,  Variable,    

L/T  Transition  Binary  at  2  pc  

Adam  J.  Burgasser  (UC  San  Diego)  Jacqueline  Faherty  (U.  Chile),  Yuri  Beletsky  (Magellan  Obs),  Jacqueline  

Radigan  (STScI),  Michael  Gillon  (U.  Liege),  Peter  Plavchan  (Caltech/IPAC),  Nidia  Morrell  (Magellan  Obs.),  Rachel  Osten  (STScI),  Rachel  Street  (LCO),  Carl  Melis  (UC  San  Diego),  Amaury  Triaud  (MIT)  &  Robert  Simcoe  (MIT)  

WISE  1049-­‐5319AB  aka  Luhman  16AB  

Identified  by  Luhman  (2013)  in  a  proper  motion/very  cold  source  search  of  multi-­‐epoch  WISE  data  (2MASS  dropouts).  

µ  =  2.78  “/yr,  detection  back  in  1978  

R  =  18.6,  J  =  10.7,  Ks  =  8.8,  W2  =  7.3    

b  =  5º    (are  you  kicking  yourself  yet?)  

d  =  2.02±0.15  pc  –  3rd  closest  system  to  Sun  (closest  to  α  Centauri)  

Kinematics  nominally  consistent  with  normal  field  dwarf  system,  but  a  suggested  association  with  Argus  (Mamajek  2013)  

http://xkcd.com/1212  

Why  is  this  source  so  awesome?  

•  It  is  a  binary  that  is  both  well-­‐separated  (1”5)  and  relatively  tight  (3.1  AU,  P  ≈  20-­‐40  yr)  

•  It  is  a  flux  reversal  binary  straddling  the  L  dwarf/T  dwarf  transition  

•  It  is  highly  variable  in  the  optical  

Easy  spectroscopic  follow-­‐up  Resolved  optical  (Kniazev  et  al.  2013)  and  near-­‐infrared  (Burgasser  et  al.  2013)  spectroscopy  and  photometry  has  been  published,    

Classified  L7.5-­‐L8  +  T0-­‐T0.5  optical  &  NIR  

Why  is  this  source  so  awesome?  

•  It  is  a  binary  that  is  both  well-­‐separated  (1”5)  and  relatively  tight  (3.1  AU,  P  ≈  20-­‐40  yr)  

•  It  is  a  flux  reversal  binary  straddling  the  L  dwarf/T  dwarf  transition  

•  It  is  highly  variable  in  the  optical  

cf.  SDSS  1534+1615AB  (Liu  et  al.  2006)            2MASS  1404-­‐3159AB  (Looper  et  al.  2008)            spectral  binary  candidates  (Burgasser  et  al.  2010;  Geiβler  et  al.  2011;  Day-­‐Jones  et  al.  2013)  

Burgasser  et  al.  (2013)  also  Kniazev  et  al.  (2013)  

A  late  bloomer?  

Luhman  16A  &  B  are  both  red  and  underluminous  @  J  for  their  spectral  types;  young  and/or  cloudy?  (cf.  Looper  et  al.  2008)  

Burgasser  et  al.  (2013)  

L7-­‐L8   T0-­‐T1  

Why  is  this  source  so  awesome?  

•  It  is  a  binary  that  is  both  well-­‐separated  (1”5)  and  relatively  tight  (3.1  AU,  P  ≈  20-­‐40  yr)  

•  It  is  a  flux  reversal  binary  straddling  the  L  dwarf/T  dwarf  transition  

•  It  is  highly  variable  in  the  optical  

ESO/TRAPPIST  

Michael  Gillon  

Gillon  et  al.  (2013)  4.87±0.01  hr  binary  period  variability  appears  to  originate  from  T  dwarf  

ATCA  (5/2)  

Keck/NIRSPEC  IRTF/SpeX  

IRTF/CSHELL  

ESO/TRAPPIST  Magellan/FIRE  Magellan/MagE  DuPont/Retrocam  CTIO/Andicam  CTIO/Las  Cumbres  

SAAO/  Las  Cumbres  

2013  April  22-­‐28  Monitoring  Campaign  

NIR  &  Optical  imaging  and  spectroscopy  +  radio  interferometry  Goals:  characterize  panchromatic  variability,  measure  radial  &  

rotational  velocities,  search  for  magnetic  emission  

•  ESO  TRAPPIST  

–  optical  variability:  published  (Gillon  et  al.  2013)  •  LCO/Retrocam  +  CTIO/Andicam  +  NTT/SofI  

–  optical  and  NIR  variability:  analysis  underway  (Radigan  &  Faherty)  •  Las  Cumbres  Chile  +  South  Africa  

–  semi-­‐continuous  monitoring:  analysis  underway  (Street)  •  Magellan/FIRE:  NIR  resolved  moderate  resolution  (multi-­‐epoch)  

–  improved  RV  &  ΔRV  and  association  membership:  analysis  complete  (Faherty)  –  spectral  variability:  analysis  underway  (Faherty)  

•  Magellan/MagE:  Optical  resolved  moderate  resolution  (multi-­‐epoch)  –  spectral  variability  incl.  Hα  &  Li  I:  analysis  underway  (Beletsky  &  Faherty)  

•  IRTF/SpeX:  NIR  resolved  spectral  monitoring  

–  component  classification:  submitted  (Burgasser  et  al.  2013)  –  spectral  variability:  analysis  underway  (Burgasser)  

•  IRTF/CSHELL:  NIR  resolved  high  resolution  –  v  sin  i  &  ΔRV:  analysis  underway  (Plavchan)  

•  Australian  Telescope  Compact  Array  –  search  for  radio  emission:  analysis  underway  (Osten)  

2013  April  22-­‐28  Monitoring  Campaign  

SOFI/NTT monitoring •  Apr 27 2013 (J. Radigan)

•  Non-ideal conditions (2” seeing) – combined light photometry

•  J and K alternating

•  fastPhot mode: variable “shade” pattern frame to frame currently limiting data reduction

achromatic trends

color variation

Magellan/FIRE  

0.8 1.0 1.2

Nor

mal

ized

Flu

x (F

)

1.4 1.6 1.8Wavelength (!m)

Luhman16A + L8 Standard

Luhman16B + T0 Standard

2.0 2.2 2.4

Faherty  et  al.  (in  prep)  

Faherty  et  al.  (in  prep)  

Magellan/FIRE  

0.8 1.0 1.2

Nor

mal

ized

Flu

x (F

)

1.4 1.6 1.8Wavelength (!m)

Luhman16A + L8 Standard

Luhman16B + T0 Standard

2.0 2.2 2.4

0.95 1.00 1.05 1.10Wavelength (!m)

Nor

mal

ized

Flu

x (F

)

FeH

FeH

CH4+H20

Luhman 16A

Luhman 16B

2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35Wavelength (!m)

Norm

alize

d Fl

ux (F

) CO

CH4

CIA H2

Luhman 16A

Luhman 16B

1.15 1.20 1.25 1.30 1.35Wavelength (!m)

Norm

alize

d Fl

ux (F

)

Na

H2OFeH

CH4

1.45 1.50 1.55 1.60 1.65 1.70 1.75Wavelength (!m)

Nor

mal

ized

Flu

x (F

)

FeHCH4

Luhman 16A

Luhman 16B

Not  an  Argus  member  

1.242 1.245 1.248 1.251 1.254Wavelength (!m)

Norm

alize

d Fl

ux (F

)

Luhman 16A

Luhman 16B

2M1632 (L8 top)SD0151 (T1 bottom)

K  I  lines  are  strong,  inconsistent  with  low  surface  gravity                  (Faherty  et  al.  in  prep)  

With  RV,  kinematics  are  inconsistent  with  membership  in  any  known  moving  group          (Kniazev  et  al.  2013)  

1.240 1.245 1.250 1.255Wavelength (!m)

0.4

0.6

0.8

1.0

1.2

Nor

mal

ized

F

1.15 1.20 1.25 1.30 1.35Wavelength (!m)

No

rmal

ized

Flux

(F)

Na

H2OFeH

CH4

K  I  lines:  Teff  and  clouds  

Luhman  16A  Luhman  16B  

1.240 1.245 1.250 1.255Wavelength (!m)

0.4

0.6

0.8

1.0

1.2

Nor

mal

ized

F

1.15 1.20 1.25 1.30 1.35Wavelength (!m)

No

rmal

ized

Flux

(F)

Na

H2OFeH

CH4

K  I  lines:  Teff  and  clouds  

Luhman  16A  Luhman  16B  

Burgasser  et  al.  (2002);  McGovern  et  al.  (2004)  

1.240 1.245 1.250 1.255Wavelength (!m)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Abso

lute

F (1

0-17 e

rg/c

m2 /s

/!m

)1.15 1.20 1.25 1.30 1.35Wavelength (!m)

No

rmal

ized

Flux

(F)

Na

H2OFeH

CH4

K  I  lines:  Teff  and  clouds  

J-­‐band  continuum  is  dictated  by  cloud  grain  scattering  

Luhman  16A  Luhman  16B  

1.165 1.170 1.175 1.180Wavelength (!m)

0.4

0.6

0.8

1.0

1.2

1.4

Nor

mal

ized

F

1.15 1.20 1.25 1.30 1.35Wavelength (!m)

No

rmal

ized

Flux

(F)

Na

H2OFeH

CH4

K  I  lines:  Teff  and  clouds  

Luhman  16A  Luhman  16B  

1.165 1.170 1.175 1.180Wavelength (!m)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Abso

lute

F (1

0-17 e

rg/c

m2 /s

/!m

)1.15 1.20 1.25 1.30 1.35Wavelength (!m)

No

rmal

ized

Flux

(F)

Na

H2OFeH

CH4

K  I  lines:  Teff  and  clouds  

1.17  µm  continuum  is  dominated  by  H2O  and  CH4  opacity  

Luhman  16A  Luhman  16B  

1.240 1.245 1.250 1.255Wavelength (!m)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Abso

lute

F (1

0-17 e

rg/c

m2 /s

/!m

)

1.165 1.170 1.175 1.180Wavelength (!m)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Abso

lute

F (1

0-17 e

rg/c

m2 /s

/!m

)

1.15 1.20 1.25 1.30 1.35Wavelength (!m)

No

rmal

ized

Flux

(F)

Na

H2OFeH

CH4

K  I  lines:  Teff  and  clouds  

Luhman  16A  Luhman  16B  

1.160 1.165 1.170 1.175 1.180 1.185Wavelength (µm)

1700

1600

1500

1400

1300

1200

1100

Brig

htne

ss T

empe

ratu

re (K

)

1.235 1.240 1.245 1.250 1.255 1.260Wavelength (µm)

1700

1600

1500

1400

1300

1200

1100

Brig

htne

ss T

empe

ratu

re (K

)

1.15 1.20 1.25 1.30 1.35Wavelength (!m)

No

rmal

ized

Flux

(F)

Na

H2OFeH

CH4

K  I  lines:  Teff  and  clouds  

Luhman  16A  Luhman  16B  

ΔT  =  100  K  

shallow  

deep  

SpeX  Spectroscopic  Monitoring  

Data  

Model  

Residuals  

“Spectroscopic  monitoring  is  a  black  art”  -­‐  anonymous  

Luhman  16AB  was  monitored  for  45  minutes  with  IRTF/SpeX  during  a  downturn  in  TRAPPIST  photometry  NB:  1.2”-­‐1.5”  seeing,  airmass  =  3.4-­‐3.5  

Unambiguous  Flux  Reversal  

0 10 20 30 40Pixels

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Profile

J K

1.0 1.2 1.4 1.6 1.8 2.0 2.2Wavelength (!m)

0

2•10-15

4•10-15

6•10-15

8•10-15

1•10-14

Appa

rent

F

Luhman  16A  Luhman  16B  

h4p://youtu.be/DIJx0flF6uc  

6.2 6.4 6.6UT Time on 26 April 2013 (hours)

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15R

elat

ive

Flux

(B/A

) TRAPPIST light curve

Continuum Flux + 0.1

Band Flux - 0.1

Relative  fluxes  (B/A)  show  similar  decline  as  broadband  photometry    

No  difference  between  continuum  and  band  fluxes  

Consistent  with  a  decline  in  B’s  brightness,  but  better  calibration  is  required  

high  resolution  optical  spectroscopy  with  

MIKE  to  measure  ΔRV  

v  sin  i  measurements  with  CSHELL  +  13CH4  gas  cell  (Anglada-­‐Escudé  et  al.  2012)  

multi-­‐color  continuous  

photometry  with  the  Las  Cumbres  

network    

most  stringent  radio  and  Hα  flux  constraints  for  brown  dwarfs  

improved  NIR  spectral  monitoring  with  HST/

WFC3  (cf.  Apai  et  al.  2013)  

tighter  parallax  and  

proper  motion  

measures  

let’s  test  those  cloudy  

atmosphere  models!  (cf.  Leggett  

et  al.  2008)  

MIR  variability  

with  Spitzer/IRAC  (cf.  Heinze  

et  al.  2013)  

orbit  constraints,  masses  soon(astro  +  RV)  

Recommended