Logistic Regression. Example: Birth defects We want to know if the probability of a certain birth...

Preview:

Citation preview

Logistic Regression

Example: Birth defects We want to know if the probability of a certain

birth defect is higher among women of a certain age Outcome (y) = presence/absence of birth defect Explanatory (x) = maternal age a birth

> bdlog<-glm(bd$casegrp~bd$MAGE,family=binomial("logit"))

Since “logit” is the default, you can actually use:> bdlog<-glm(bd$casegrp~bd$MAGE,binomial)

> summary(bdlog)

Example in RCall:

glm(formula = bd$casegrp ~ bd$MAGE, family = binomial("logit"))

Deviance Residuals:

Min 1Q Median 3Q Max

-0.56672 -0.24047 -0.14728 -0.08994 3.60539

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.82555 0.32491 2.541 0.0111 *

bd$MAGE -0.19793 0.01489 -13.290 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 2364.1 on 11892 degrees of freedom

Residual deviance: 2130.8 on 11891 degrees of freedom

AIC: 2134.8

xP

P1979.08255.0

1ln

Plot> plot(MAGE~ fitted(glm(casegrp~ MAGE,binomial)), xlab=“Maternal Age”, ylab=“P(Birth Defect)”, pch=15)

Example: Categorical x Sometimes, it’s easier to interpret logistic

regression output if the x variables are categorical Suppose we categorize maternal age into 3

categories:

> bd$magecat3 <- ifelse(bd$MAGE>25, c(1),c(0))

> bd$magecat2 <- ifelse(bd$MAGE>=20 & bd$MAGE<=25, c(1),c(0))

> bd$magecat1 <- ifelse(bd$MAGE<20, c(1),c(0))

Maternal Age

Birth Defect

< 20 years 20-24 years

> 24 years

Yes 101 105 36

No 1385 3755 6511

Example in R> bdlog2<-glm(casegrp~magecat1+magecat2,binomial)

> summary(bdlog2)

Remember, with a set of dummy variables, you always put in one less variable than category

Example in RCall:

glm(formula = casegrp ~ magecat1 + magecat2, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.3752 -0.2349 -0.1050 -0.1050 3.2259

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.1977 0.1671 -31.101 <2e-16 ***

magecat1 2.5794 0.1964 13.137 <2e-16 ***

magecat2 1.6208 0.1942 8.345 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2364.1 on 11892 degrees of freedom

Residual deviance: 2148.6 on 11890 degrees of freedom

AIC: 2154.6

Interpretation: odds ratios

> exp(cbind(OR=coef(bdlog2),confint(bdlog2)))

Waiting for profiling to be done...

OR 2.5 % 97.5 %

(Intercept) 0.005529105 0.003910843 0.007544544

magecat1 13.189149619 9.066531887 19.622868917

magecat2 5.057367954 3.492376718 7.495720840

This tells us that: women <20 years have a 13 times greater odds of

a birth defect than women >24 years women 20-24 years have a 5 times greater odds

of a birth defect than women >24 years

)exp( nOR

What variables can we consider dropping?> anova(bd.log,test="Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: casegrp

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 11880 2355.87

magecat1 1 130.58 11879 2225.28 < 2.2e-16 ***

magecat2 1 82.73 11878 2142.56 < 2.2e-16 ***

bthparity2 1 13.37 11877 2129.18 0.0002555 ***

smoke 1 16.10 11876 2113.09 6.022e-05 ***

Small p-values indicate that all variables are needed to explain the variation in y

Goodness of fit statisticsCoefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.9100 0.1870 -26.252 < 2e-16 ***

magecat1 2.2534 0.2073 10.872 < 2e-16 ***

magecat2 1.4732 0.1965 7.497 6.52e-14 ***

bthparity2parous -0.5932 0.1497 -3.962 7.45e-05 ***

smokesmoker 0.6515 0.1546 4.213 2.52e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 2355.9 on 11880 degrees of freedom

Residual deviance: 2113.1 on 11876 degrees of freedom

AIC: 2123.1-2 log LAIC

Binned residual plot> x<-predict(bd.log)

> y<-resid(bd.log)

> binnedplot(x,y)

Plots the average residual and the average fitted (predicted) value for each bin, or category

Category is based on the fitted values

95% of all values should fall within the dotted line

Poisson Regression

Using count data

What is a Poisson distribution?

Example: children ever born The dataset has 70 rows representing group-

level data on the number of children ever born to women in Fiji: Number of children ever born Number of women in the group Duration of marriage

1=0-4, 2=5-9, 3=10-14, 4=15-19, 5=20-24, 6=25-29 Residence

1=Suva (capital city), 2=Urban, 3=Rural Education

1=none, 2=lower primary, 3=upper primary, 4=secondary+

Poisson regression in R> ceb1<-glm(y ~ educ + res, offset=log(n), family = "poisson",

data = ceb)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.43029 0.01795 79.691 <2e-16 ***

educnone 0.21462 0.02183 9.831 <2e-16 ***

educsec+ -1.00900 0.05217 -19.342 <2e-16 ***

educupper -0.40485 0.02956 -13.696 <2e-16 ***

resSuva -0.05997 0.02819 -2.127 0.0334 *

resurban 0.06204 0.02442 2.540 0.0111 *

---

Null deviance: 3731.5 on 69 degrees of freedom

Residual deviance: 2646.5 on 64 degrees of freedom

AIC: Inf

Need to account for different population sizes in each area/group unless data are from same-size populations

Assessing model fit1. Examine AIC score – smaller is better

2. Examine the deviance as an approximate goodness of fit test Expect the residual deviance/degrees of freedom to be

approximately 1

> ceb2$deviance/ceb2$df.residual

[1] 41.35172

3. Compare residual deviance to a 2 distribution> pchisq(2646.5, 64, lower=F)

[1] 0

Model fitting: analysis of deviance Similar to logistic regression, we want to compare

the differences in the size of residuals between models

> ceb1<-glm(y~educ, family=“poisson", offset=log(n), data= ceb)

> ceb2<-glm(y~educ+res, family=“poisson", offset=log(n), data= ceb)

> 1-pchisq(deviance(ceb1)-deviance(ceb2), df.residual(ceb1)-df.residual(ceb2))

[1] 0.0007124383

Since the p-value is small, there is evidence that the addition of res explains a significant amount (more) of the deviance

Overdispersion in Poission models A characteristic of the Poisson distribution is

that its mean is equal to its variance

Sometimes the observed variance is greater than the mean Known as overdispersion

Another common problem with Poisson regression is excess zeros Are more zeros than a Poisson regression would

predict

Overdispersion Use family=“quasipoisson” instead of “poisson” to estimate the dispersion parameter

Doesn't change the estimates for the coefficients, but may change their standard errors

> ceb2<-glm(y~educ+res, family="quasipoisson", offset=log(n), data=ceb)

Poisson vs. quasipoisson

Family = “poisson”Family = “quasipoisson”

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.43029 0.01795 79.691 <2e-16 ***

educnone 0.21462 0.02183 9.831 <2e-16 ***

educsec+ -1.00900 0.05217 -19.342 <2e-16 ***

educupper -0.40485 0.02956 -13.696 <2e-16 ***

resSuva -0.05997 0.02819 -2.127 0.0334 *

resurban 0.06204 0.02442 2.540 0.0111 *

---

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3731.5 on 69 degrees of freedom

Residual deviance: 2646.5 on 64 degrees of freedom

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.43029 0.10999 13.004 < 2e-16 ***

educnone 0.21462 0.13378 1.604 0.11358

educsec+ -1.00900 0.31968 -3.156 0.00244 **

educupper -0.40485 0.18115 -2.235 0.02892 *

resSuva -0.05997 0.17277 -0.347 0.72965

resurban 0.06204 0.14966 0.415 0.67988

---

(Dispersion parameter for quasipoisson taken to be 37.55359)

Null deviance: 3731.5 on 69 degrees of freedom

Residual deviance: 2646.5 on 64 degrees of freedom

Models for overdispersion When overdispersion is a problem, use a

negative binomial model Will adjust estimates and standard errors

> install.packages(“MASS”)

> library(MASS)

> ceb.nb <- glm.nb(y~educ+res+offset(log(n)), data= ceb)

OR> ceb.nb<-glm.nb(ceb2)

> summary(ceb.nb)

NB model in Rglm.nb(formula = ceb2, x = T, init.theta = 3.38722121141125, link = log)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.490043 0.160589 9.279 < 2e-16 ***

educnone 0.002317 0.183754 0.013 0.98994

educsec+ -0.630343 0.200220 -3.148 0.00164 **

educupper -0.173138 0.184210 -0.940 0.34727

resSuva -0.149784 0.165622 -0.904 0.36580

resurban 0.055610 0.165391 0.336 0.73670

---

(Dispersion parameter for Negative Binomial(3.3872) family taken to be 1)

Null deviance: 85.001 on 69 degrees of freedom

Residual deviance: 71.955 on 64 degrees of freedom

AIC: 740.55

Theta: 3.387

Std. Err.: 0.583

2 x log-likelihood: -726.555

> ceb.nb$deviance/ceb.nb$df.residual[1] 1.124297

What if your data looked like…

Zero-inflated Poisson model (ZIP) If you have a large number of 0 counts…

> install.packages(“pscl”)

> library(pscl)

> ceb.zip <- zeroinfl(y~educ+res, offset=log(n), data= ceb)

Recommended