James K. Thompson, NIST, JILA Dept. Physics Univ. Colorado

Preview:

Citation preview

Quantum many‐body statesfor precision measurement

James K. Thompson,  NIST, JILA  & Dept. of Physics at Univ. of Colorado

Precision Measurements: Things you can do with many quantum objects, that you can’t do with one

Steady‐state superradiant lasersSpin squeezed states

Reducing Quantum Noise

World record entanglement for quantum sensors

Atoms cancel each other’s noise

Making Sharper Optical Rulers

100x reduction in laser linewidthfor frequency, length, and gravity metrology

Hide laser information in collective state of atoms

Both Impact Wide Array of Measurements

To go where nobody has gone before Magnetic & electric field

Force, pressure, temp.

Gravity field

Realization & distribution of SI Base Units

Rotation,Acceleration

A Lineage of Quantum Control FreaksControl of InternalAtomic States

Single Ion/ElectronTrapping

1989 1997Laser Cooling& Trapping

2001Bose EinsteinCondensation

2012Single‐System 

Quantum Control

2005Coherent Optical 

Control

Nearly Complete Control of Single Atoms

What’s next!?

credit: Nobel

Parallel Control of Independent Atoms

credit: Nobel

Ultra‐PreciseAtomic Clocks

0.000 000 000 000 000 003(courtesy Ye group)

(credit Hubble)

World’s most precise absolute measurement of any kind

Matterwave InterferometersEinstein’s equivalence principleDetermine gravitational constant  GDetect gravity waves

Use pulses of light to spatiallysplit the atomic wave function

Credit:  A. Peters group

GPS free navigationGyroscopes AccelerometersGravimetryFundamental constants of natureTests of QEDTest atomic charge neutrality

Parallel Control of Independent Atoms

credit: Nobel

But what’s next?!

Vision for New Frontier of Precision Measurements

Can we move beyond the single atom paradigm?

Precision Measurements: Things you can do with many quantum objects, that you can’t do with one

• Core NIST mission • Critical advances in measurement science

Two Complex Experimental Systems: Rb, Sr

Canceling Quantum Fuzziness with Entanglement

JG Bohnet, KC Cox, MA Norcia, JM Weiner, Z Chen, JKT Nature Photonics 8, 731‐736 (2014)

Quantum Certainty Principle:all atoms are identical

Why Use Atoms/Molecules? Accuracy

Quantum Mechanics Giveth and Taketh…

Quantum Certainty Quantum Fuzziness

Ener

gy

12

3910

11

87

12

456

Fundamental limit for allquantum sensors

Squeezing Quantum Noise

fuzzy state of independent atoms Measure Pointing

squeezed fuzzinessof entangled atoms

Cavity enablescollectivemeasurement

200Trial #

Surpassing the Standard Quantum Limit

Angle

Trial #0200

Angle

JG Bohnet, KC Cox, MA Norcia, JM Weiner, Z Chen, JKT Nature Photonics 8, 731‐736 (2014)

Entangled atoms cancel each other’squantum noise

Precision Measurements: Things you can do with many quantum objects, that you can’t do with one?

World Record Entanglement

15

10

15

20

25

30

35

40

45

50

55

60

65

Impr

ovem

ent o

ver S

tand

ard

Qua

ntum

Lim

it

100 101 102 103 104 105 106 107

Atom or Ion Number

GaTechChapman

MITVuletic

InnsbruckBlatt

ViennaSchmiedmayer

BaselTreutlein

BarcelonaMitchell

CopenhagenPolzikHeidelberg

Oberthaler

HannoverKlempt

JILAThompson17.6(4) dB

NISTWineland

StanfordKasevich

(unpublished)

Directly observed enhancement over SQL with no background subtractions 

Technology: Matterwave InterferometersEinstein’s equivalence principleDetermine gravitational constant  GDetect gravity waves?

GPS free navigationGyroscopes AccelerometersGravimetryFundamental constants of natureTests of QEDTest atomic charge neutrality

Use pulses of light to spatiallysplit the atomic wave function

Credit:  A. Peters group

Technology: Optical Lattice Clocks

Many Key Advantages of Optical Approach

• Extended to our strontium system• Improved optical lattice clocks of Ye, Ludlow et al

• Very fast: 40 s• Avoids inaccuracies• Non‐destructive for higher bandwidth

M.A. Norcia, J.K. Thompson arxiv:1506.02297 (2015)

Superradiant Lasers: Ultraprecise Rulers ofTime and Space

JG Bohnet, Z Chen, JM Weiner, D Meiser, MJ Holland & JKT, Nature 484, 78‐81, April 5, 2012

Collective Synchronization

Atoms collectively store information inside laser

bacteria

Laser is the Central Ruler of Time & SpaceOptical Atomic Clock

Quantum atoms

Optical frequency comb

Classicalprobe laser

Microwave

Laser 106 :1 Reduction Gear

A Sharper Ruler

A Sharper Ruler

IMS:  Two Innovative Paths

Ye Lab: New Optical Materials Thompson Lab: Superradiant Laser

Goal:  x 100 improvementRadically different approachQuiet laser lab not needed

Atoms

Photons(~ 1)

Thompson, Ye, Jin, Holland, Rey, Gorshkov

Lasing on ultranarrow atomic transitions

Strontium

1S0

3 P0

Lifetime 150 seconds

P ~ N 2

>10,000 x less sensitive to cavity noise~1 mHz quantum linewidth, Q~ 1018

Laser P

ower 

(nW)

Time (s)

Stepping Stone:  Lasing on 7.5 kHz 3P1 transition

Meiser, Ye, Carlson, Holland, PRL 102, 163601 (2009)JG Bohnet, Z Chen, JM Weiner, D Meiser, MJ Holland & JKT, Nature 484, 78‐81, 2012

Gravity’s Impact on Time

Proposed IMS work:  ~1 cm in 1 second! 

~ 30 cm in 1 day

NIST Al+ clock

Freq

uency shift

Measurement number

Vision for New Frontier of Precision Measurements

Can we move beyond the single atom paradigm?

SummaryThanks to the Team :StrontiumMatthew NorciaKarl MayerMatthew Winchester

CollaboratorsMurray J. Holland, Jun Ye, Ana Maria Rey, Debbie Jin, Alexey Gorshkov, Andrew Daley, Michael Foss‐Feig, Dominic Meiser, M. Xu, D. Tieri, E. Fine

DARPA QUASAR, ARO, ONR, NSF PFC, NIST, NSF GRF, NDSEG, A*STAR 

REU StudentsDaniel Barker (JQI)Steven Moses (JILA)Katherine McAlpine (UW)Elissa Picozzi (Whitman College)Michelle Chalupnik (U. Chicago)

RubidiumJustin Bohnet (NRC postdoc)Kevin CoxJoshua  WeinerZilong Chen (Data Storage Inst.)Graham GreveJiayan Dai, Shannon Sankar

Recommended