Ion engine for Small Spacecraft

Preview:

Citation preview

Hiroyuki KOIZUMI

1. Principle

Seebeck effect

Peltier effect

Thomson effect

Thermoelectric effect

ฮ”๐‘‡

๐ผ

ฮ”๐‘‰

๐‘„

๐ผ ๐‘„Heattransfer

Current

Voltagedifference

Temperaturedifference

Seebeck effect

Peltier effect

Thomson effect

ฮ”๐‘‰ = โˆ’๐‘†ฮ”๐‘‡

๐‘„ = ฮ ๐ด โˆ’ ฮ ๐ต ๐ผ

๐‘„ = โˆ’๐œ…๐ผฮ”๐‘‡

Thermoelectric effect

Peltier effect

Thomson effect

๐‘„ = ฮ ๐ด โˆ’ ฮ ๐ต ๐ผ

๐‘„ = โˆ’๐œ…๐ผฮ”๐‘‡

Electricity Heat

Joule heating ๐‘„ = ๐‘…๐ผ2Generation

Transfer (Q>0 = output)

Transfer

Peltier effect

Thomson effect

๐‘„ = ฮ ๐ต โˆ’ ฮ ๐ด ๐ผ

๐‘„ = ๐œ…๐ผฮ”๐‘‡

Electricity Heat

Joule heating ๐‘„ = ๐‘…๐ผ2Irreversible

Reversible

Reversible

Thermoelectric EMF(็†ฑ่ตท้›ปๅŠ›)

Seebeck coefficient or Thermopower (็†ฑ้›ป่ƒฝ)

Found by T.J. Seebeck

Seebeck effect (1821)ใ‚ผใƒผใƒšใƒƒใ‚ฏๅŠนๆžœ

๐‘‡ ๐‘‡ + ฮ”๐‘‡

ฮ”๐‘‰

ฮ”๐‘‰ = โˆ’๐‘† ฮ”T

๐‘‡๐ด ๐‘‡๐ต

๐‘‰๐ด๐ต

๐‘‰๐ด๐ต = โˆ’ ๐ด

๐ต

๐‘† ๐‘‡ ๐‘‘๐‘‡

Seebeck effect (1821)ใ‚ผใƒผใƒšใƒƒใ‚ฏๅŠนๆžœ

8

Thermal equilibrium condition with Electron diffusion

No temperature gradient case

With temperature gradient case

heating

Same temperatures

Charge is carried by electron flow

MaterialSeebeck

coefficient/(ฮผV/K)

Selenium 895

Tellurium 495

Silicon 435

Germanium 325

Antimony 42

Nichrome 20

Molybdenum 5.0

Cadmium, tungsten 2.5

Gold, silver, copper 1.5

Rhodium 1.0

Tantalum -0.5

Lead -1.0

Aluminium -1.5

Carbon -2.0

Mercury -4.4

Platinum -5.0

Sodium -7.0

Potassium -14

Nickel -20

Constantan -40

Bismuth -77

Wide variety

Dependency on ๐‘‡

P-type semiconductor

Carrier: positive hole

ฮ”๐‘‰ = โˆ’๐‘† ฮ”๐‘‡

High ๐‘‡

Lower hole density(stochastically, by random walk)

Negative potential

Low ๐‘‡

๐‘† > 0

N-type semiconductor

Carrier: negative electron

ฮ”๐‘‰ = โˆ’๐‘† ฮ”๐‘‡

High ๐‘‡

Lower electron density(stochastically, by random walk)

Positive potential

Low ๐‘‡

๐‘† < 0

P-N junctionPCarrier: positive hole

NCarrier: negative electron

Found by J.C.A. Peltier

Peltier effect (1844)ใƒšใƒซใƒใ‚งๅŠนๆžœ

Q = ฮ ๐ผ

A

ฮ A๐ผ ฮ ๐ต๐ผ

BQAB = (ฮ ๐ด โˆ’ ฮ ๐ต)๐ผ

QAB

ฮ : Peltier coefficient

Metal N-type P-typeEnergy

Electron energy state in solids

Metal AEnergy

Electron energy state in solids

Metal Bcurrent

Energy gap

Metal AEnergyMetal Bcurrent

Energy gap

HeatHeating

Metal AEnergyMetal Bcurrent

Energy gap

HeatCooling

N-type

carrier: electron

P-type

carrier: hole

current

Heat

Energy release

N-type

carrier: electron

P-type

carrier: hole

current

Heat

Energy injection

20

๐œ…: Thomson coefficient

(electric specific heat)

Predicted by William Thomson (Lord Kelvin)

Thomson effect (1854๏ผ‰ใƒˆใƒ ใ‚ฝใƒณๅŠนๆžœ

๐‘‡ ๐‘‡ + ฮ”๐‘‡

Q = โˆ’๐œ…๐ผฮ”๐‘‡

๐ผ

Current

Energy

๐‘‡ ๐‘‡ + ฮ”๐‘‡

Low energycarrier

High energycarrier

Heat

Current

Energy

๐‘‡ ๐‘‡ + ฮ”๐‘‡

Low energycarrier

High energycarrier

Heat

Seebeck effect

Peltier effect

Thomson effect

ฮ”๐‘‰ = ๐‘†ฮ”๐‘‡

๐‘„ = ฮ ๐ต โˆ’ ฮ ๐ด ๐ผ

๐‘„ = ๐œ…๐ผฮ”๐‘‡

Thermoelectric effectAll the phenomena are caused by the current carriers

They should be related each other

๐‘‡ ๐‘‡ + ฮ”๐‘‡

ฮ”๐‘‰

๐‘„in ๐‘„out

๐‘„ex

๐‘„J

๐‘„in = ฮ  ๐‘‡ ๐ผ

Current๐ผ

๐‘„out = ฮ  ๐‘‡ + ฮ”๐‘‡ ๐ผ

๐‘„J = โˆ’๐ผฮ”๐‘‰

Peltier effect

๐‘„J + ๐‘„in โˆ’ ๐‘„out โˆ’ ๐‘„ex = 0 Energy balance

Note, voltage drop with current is โˆ’ฮ”๐‘‰

ฮ”๐‘‰

๐‘„in ๐‘„out

๐‘„ex

๐‘„J

Current๐ผ

ฮ”๐‘‰ = โˆ’๐œŒฮ”๐‘ฅ

๐ด๐ผ โˆ’ ๐‘†ฮ”๐‘‡

Resistance effect+Seebeck effect

๐œŒ : resistivity

๐ด : cross section

๐‘‡ ๐‘‡ + ฮ”๐‘‡

๐‘„ex = ๐œŒฮ”๐‘ฅ

๐ด๐ผ2 โˆ’

dฮ 

๐‘‘๐‘‡โˆ’ ๐‘† ฮ”๐‘‡๐ผ

๐‘„ex = ๐œŒฮ”๐‘ฅ

๐ด๐ผ2 โˆ’

dฮ 

๐‘‘๐‘‡โˆ’ ๐‘† ฮ”๐‘‡๐ผ

Thomson effect

๐‘„ = โˆ’๐œ…๐ผฮ”๐‘‡

Joule heating

๐‘„ = ๐‘…๐ผ2

๐œ… =dฮ 

๐‘‘๐‘‡โˆ’ ๐‘†

The first Thomson relation

Current๐ผ

Two different materials

Temperature difference

Voltage differenceand current flow

Adjusting voltage to neglect ๐ผ2 term

Voltage supply

to ๐ผ2 โ‰… 0

B A

๐‘‡H

๐‘‡C๐‘‰

Voltage supply

to ๐ผ2 โ‰… 0

B A

๐‘‡ + ฮ”๐‘‡

๐‘‡

๐‘‰ = ๐‘†๐ตฮ”๐‘‡ โˆ’ ๐‘†๐ดฮ”๐‘‡ + ๐›ฟ๐‘‰

๐‘‰

to flow a little current

to compensate the thermoelectric EMF

๐‘„T,๐ต ๐‘„T,๐ต

๐‘„P,๐ต๐ด

๐‘„P,๐ด๐ต

๐‘„P,๐ต๐ด = ฮ ๐ต๐ด ๐‘‡ + ฮ”๐‘‡ ๐ผ

๐‘„P,๐ด๐ต = ฮ ๐ด๐ต ๐‘‡ ๐ผ

๐‘„T,๐ต = โˆ’๐œ…๐ตฮ”๐‘‡๐ผ

๐‘„T,๐ด = ๐œ…๐ดฮ”๐‘‡๐ผ

ฮ ๐ด๐ต = ฮ ๐ด โˆ’ ฮ ๐ต

๐‘‰ โ‰… โˆ’๐‘†๐ด๐ตฮ”๐‘‡

๐‘‰๐ผ = ๐‘„P,๐ต๐ด + ๐‘„P,๐ด๐ต + ๐‘„T,๐ต + ๐‘„P,๐ด

๐‘‘ฮ ๐ด๐ต๐‘‘๐‘‡

โˆ’ ๐‘†๐ด๐ต = ๐œ…๐ด๐ต

๐‘†๐ด๐ต = ๐‘†๐ด โˆ’ ๐‘†๐ต

๐œ…๐ด๐ต = ๐œ…๐ด โˆ’ ๐œ…๐ต

(The first Thomson relation)

Energy balance

Entropy balanceIrreversible process, Joule heating, is neglected by ๐ผ2 โ‰… 0

๐‘„P,๐ต๐ด๐‘‡ + ฮ”๐‘‡

+๐‘„P,๐ด๐ต๐‘‡

+๐‘„T,๐ต

๐‘‡ + ฮ”๐‘‡/2+

๐‘„T,๐ด๐‘‡ + ฮ”๐‘‡/2

= 0

ฮ ๐ต๐ด ๐‘‡ + ฮ”๐‘‡

๐‘‡ + ฮ”๐‘‡+ฮ ๐ด๐ต ๐‘‡

๐‘‡+

๐œ…๐ด๐ตฮ”๐‘‡

๐‘‡ + ฮ”๐‘‡/2= 0

๐‘‘ฮ ๐ด๐ต๐‘‘๐‘‡

โˆ’ฮ ๐ด๐ต๐‘‡= ๐œ…๐ด๐ต

ฮ ๐ต๐ด ๐‘‡ + ฮ”๐‘‡

๐‘‡ + ฮ”๐‘‡=ฮ ๐ต๐ด๐‘‡+dฮ ๐ต๐ดd๐‘‡

ฮ”๐‘‡

๐‘‡โˆ’ฮ ๐ต๐ด๐‘‡2ฮ”๐‘‡ + ๐‘‚ ฮ”๐‘‡2

ฮ”๐‘‡ โ†’ 0

๐‘‘ฮ ๐ด๐ต๐‘‘๐‘‡

โˆ’ฮ ๐ด๐ต๐‘‡= ๐œ…๐ด๐ต

๐‘‘ฮ ๐ด๐ต๐‘‘๐‘‡

โˆ’ ๐‘†๐ด๐ต = ๐œ…๐ด๐ต

Energy balance(The first Thomson relation)Entropy balance

ฮ ๐ด๐ต๐‘‡= ๐‘†๐ด๐ต

The second Thomson relation

๐‘‘ฮ 

๐‘‘๐‘‡โˆ’ ๐‘† = ๐œ…

ฮ 

๐‘‡= ๐‘†

Seebeck coefficient: ๐‘†

Peltier coefficient: ฮ 

Thomson coefficient: ๐œ…

Three coefficients

Two relations

One of three coefficientsgives the other two coefficients

The only one directly measurable for individual materials

Onsager reciprocal relationsin Non-equilibrium thermodynamicsCheck it for more exact and more universal deviation.

Potential: ๐œ™

Its conjugate: ๐‘

Its flow: ๐ฝ

๐ฝ1๐ฝ2โ‹ฎ๐ฝ๐‘

=๐ฟ11 โ‹ฏ ๐ฟ1๐‘โ‹ฎ โ‹ฑ โ‹ฎ๐ฟ๐‘1 โ‹ฏ ๐ฟ๐‘๐‘

โˆ‡๐œ™1๐›ป๐œ™2โ‹ฎ๐›ป๐œ™๐‘

๐ฟ๐‘–๐‘— = ๐ฟ๐‘—๐‘– Onsager reciprocal relations

๐‘‡, ๐œ™๐‘’ , ๐‘ƒ, ๐œ‡,โ‹ฏ

๐‘ , ๐‘ž, ๐‘‰,๐‘š,โ‹ฏ

(๐‘๐œ™ has the unit of energy)

Intensive variables

Extensive variables

2. Thermocouple

Thermocouple thermometer

Thermocoupleโ€œvery basicโ€ temperature measurement way.Using Seebeck effect

๐‘‰

๐‘‰๐ด๐ต = โˆ’ ๐ต

๐ด

๐‘† ๐‘‡ ๐‘‘๐‘‡

Thermocoupleโ€œvery basicโ€ temperature measurement way.Using Seebeck effect

Unknown

๐‘‡๐ด

Known

๐‘‡๐ต

Unknown

๐‘‡๐ด

Known

๐‘‡๐ต

Thermocoupleโ€œvery basicโ€ temperature measurement way.Using Seebeck effect

๐‘‰ Meter

Wire

Connection is (usually) necessary

Thermocouple

๐‘‰ Meter

๐‘‰๐‘€๐ด = โˆ’ ๐‘€

๐ด

๐‘†w ๐‘‡ ๐‘‘๐‘‡

๐‘‰๐ต๐‘€ = โˆ’ ๐ต

๐‘€

๐‘†w ๐‘‡ ๐‘‘๐‘‡

Unknown

๐‘‡๐ด

Known

๐‘‡๐ต

What you measure is ๐‘‰๐ต๐ด โˆ’ ๐‘‰๐‘€๐ด โˆ’ ๐‘‰๐ต๐‘€

Thermocouple

๐‘‰

๐‘‰ = ๐ต

๐ด

๐‘†+ ๐‘‡ โˆ’ ๐‘†โˆ’ ๐‘‡ ๐‘‘๐‘‡

Unknown

๐‘‡๐ด

Known

๐‘‡๐ต

What you measure is

Uniform temperature

Material-

Material+

๐‘‰

Use two materials(no other way)

Thermocouple

๐‘‰ = ๐ต

๐ด

๐‘†+ ๐‘‡ โˆ’ ๐‘†โˆ’ ๐‘‡ ๐‘‘๐‘‡

Coupled propertiesare important

Type Materials๐‘†ยฑ/

(๐œ‡๐‘‰/โ„ƒ)

K Chromel Alumel 41

J Iron Constantan 50

N Nicrosil Nisil 39

R 87%Pt/13%Rh

Platinum 10

T Copper Constantan 43

E Chromel Constantan 68

Thermocouple

T Range/โ„ƒ Remarks

-200 +1350High sensitivityHigh linearity

-40 +750High sensitivityEasily rusting

-270 +1300Wide range

stability

0 +1600High temperature

Expensive

-200 350Low temperature

Thermal noise

-110 +140Highest

sensitivity

Type Materials๐‘†ยฑ/

(๐œ‡๐‘‰/โ„ƒ)

K Chromel Alumel 41

J Iron Constantan 50

N Nicrosil Nisil 39

R 87%Pt/13%Rh

Platinum 10

T Copper Constantan 43

E Chromel Constantan 68

Thermocouple

Type Materials๐‘†ยฑ/

(๐œ‡๐‘‰/โ„ƒ)

K Chromel Alumel 41

J Iron Constantan 50

N Nicrosil Nisil 39

R 87%Pt/13%Rh

Platinum 10

T Copper Constantan 43

E Chromel Constantan 68

Color code

IEC BS

3. ThermoelectricPower Generation

44

Semiconductor thermoelectric circuit

Small heat engines Non-mechanical engine(Radioisotope generators) Recovery of waste heat (Energy Harvesting)

Thermoelectric power generation

Load

resistance: ๐‘…

Heat input

๐‘„๐‘‡H

๐‘‡C

Ptype

Ntype

45

Thermoelectric power generation

Load

resistance: ๐‘…

Heat input

๐‘„๐‘‡H

๐‘‡C

Generated power W

Excited current IPtype

Ntype

Current๐ผ

๐ผ =๐‘‰

๐‘… + ๐‘Ÿ=๐‘† ๐‘‡๐ป โˆ’ ๐‘‡๐ถ๐‘Ÿ ๐‘š + 1

๐‘š =๐‘…

๐‘Ÿ

๐‘Š = ๐ผ2๐‘… =๐‘†2 ๐‘‡๐ป โˆ’ ๐‘‡๐ถ

2

๐‘Ÿ ๐‘š + 1 2

h : hightA : cross section ฯ : resistivity ฮป : thermal conductance

๐‘Ÿ =โ„Žp๐œŒp

๐ดp+โ„Žn๐œŒn๐ดn

Thermoelectric power generation

Load

resistance: ๐‘…

Heat input

๐‘„๐‘‡H

๐‘‡C

Ptype

Ntype

Current๐ผ

Ohmic heating

Heat conduction

Peltier heat

h : hightA : cross section ฯ : resistivity ฮป : thermal conductance

๐‘„๐‘‚ = ๐‘Ÿ๐ผ2 ๐‘Ÿ =

โ„Žp๐œŒp

๐ดp+โ„Žn๐œŒn๐ดn

๐‘„๐ป = ฮ›(๐‘‡๐ป โˆ’ ๐‘‡๐ถ)ฮ› =

๐œ†p๐ดp

โ„Žp+๐œ†n๐ดnโ„Žn

๐‘„๐‘ƒ = ๐‘†๐‘‡๐ป๐ผ

Thermoelectric power generation

Load

resistance: ๐‘…

Heat input

๐‘„๐‘‡H

๐‘‡C

Ptype

Ntype

Current๐ผ

Heat balance on hot side

๐‘„ +1

2๐‘„๐‘‚ โˆ’ ๐‘„๐ป โˆ’ ๐‘„๐‘ƒ = 0

๐‘„ = ๐‘†๐‘‡๐ป๐ผ + ฮ› ๐‘‡๐ป โˆ’ ๐‘‡๐ถ โˆ’1

2๐‘Ÿ๐ผ2

Thermoelectric power generation

Theoretical thermal efficiency

๐‘šopt = 1 +๐‘

2๐‘‡๐ป โˆ’ ๐‘‡๐ถ

๐œ‚ =๐‘‡๐ป โˆ’ ๐‘‡๐ถ๐‘‡๐ป

๐‘šopt โˆ’ 1

๐‘šopt + ๐‘‡๐ถ/๐‘‡๐ป

๐œ‚ =๐‘Š

๐‘„= ๐‘“(๐‘‡๐ป , ๐‘‡๐ถ , ๐‘š, ๐‘)

Maximum efficiency (impedance matching)

๐‘opt = S2 ๐œ†๐‘๐œŒ๐‘ + ๐œ†๐‘›๐œŒ๐‘›

โˆ’2

๐‘ =๐‘†2

ฮ›๐‘ŸFigure-of-merit (็†ฑ้›ป็ด ๅญๅฏพใฎๆ€ง่ƒฝๆŒ‡ๆ•ฐ )

Thermoelectric materials

49

Temperature dependence of ZT (dimensionless parameter)

p-type (left) and n-type (right) semiconductors

Design example

50

Specifications

p n

e [mV/K] 210 โ€170

r [mWm] 18 14

l [W/mK] 1.1 1.5

h [cm] 1.0 1.0

S [cm2] 1.3 1.0

TH=1,000K and TC=400K๏ผˆS has been optimized๏ผ‰

Thermal efficiency

Output =4.5[W]

6

p n 380 10 [V/K]e e e

2

2 -1

max p p n n 0.00177[K ]Z e l r l r

opt 1.5m R r

max

1000 400 1.5 10.6 0.26 0.16

1000 1.5 400 1000

2 2

opt opt

opt

0.2280.004127

0.006886

TW R

R r

e

2.8mr W

=

Radioisotope Generator: RTG ๅŽŸๅญๅŠ›้›ปๆฑ 

Energy from the decay of a radioactive isotope to generate electricity๏ผˆdifferent from nuclear reactor๏ผ‰

Nuclear ReactorUse of nuclear chain reaction

Natural decay Chain reaction

Control the rateby the material and environment

Chain reactionUse of nuclear chain reaction

Electron

Nucleus

= Protons+ neutrons

Atom

Chemical energyUse of electron energy states

Electron

Radioactive decayUse of nucleus energy

Plutonium 238

He

Uranium 234

x 94

x 144

x 94

x 92

x 142

x 92

x 2

x 2

x 2Half decayby 88 years

Radioactive decayUse of nucleus energy

Plutonium 238

He

Uranium 234

x 94

x 144

x 94

x 92

x 142

x 92

x 2

x 2

x 2Half decayby 88 years

540 W/kg

RTG๏ฝž5 W/kg

SAP๏ฝž50 W/kg(1 AU)

59

Radioisotope-Thermoelectric Generator

Electric output 290W/250W

Thermal Output 4,234Wt

TH 1000โ„ƒ

Total mass 55kg

Pu mass 7.561kg

size 114cmร—f42cm

Galileo RTG

Radioisotope Generator: RTG ๅŽŸๅญๅŠ›้›ปๆฑ 

Energy from the decay of a radioactive isotope to generate electricity๏ผˆdifferent from nuclear reactor๏ผ‰

VoyagerRTG was located with a distance from the main body.Power would be 73% of BOL after 39 years.

CuriosityRTG on the back (hip)

CassiniThree RTGswith a cover for each

New HorizonsThe latest RTG

Thank you

Recommended