Introduction to Photochemistry and Electron Transfer Theory · Introduction to Photochemistry and...

Preview:

Citation preview

Introduction to Photochemistry and Electron Transfer Theory

Tomoyasu ManiDepartment of ChemistryUniversity of Connecticut

10/30/2019 1

CT Japan

Photochemistry Workshop

2

Color Changes with Complexations: Observation of Charge-Transfer

Absorption

https://mani.chem.uconn.edu/photochem-workshop/

3

Department of Chemistry at the University of Connecticut

• @ Storrs, CT• 26 tenure‐track or tenured professors• Located in the Chemistry Building • 65 cutting‐edge research and teaching labs

4

What is Photochemistry?

The chemistry concerned with the chemical effects of light. Generally, a chemical reaction is caused by using UV, visible, infrared light. 

700 nm 400 nm600 nm 500 nm

5

Why Important?

Photosynthesis is Driven by Light! We can see “inside” by Light!

6

Converting Light to Something Else.

Making Molecules with Light. Making Electricity from Light.

7

What is Going On? General Jablonski Diagram

FluorescencePhotonAbsorption

Ene

rgy

S3

S2

S1

IC

Ground State

Singlet Manifold

IC = internal conversion

8

Photoexcitation = Excess Energy

FluorescencePhotonAbsorption

Ene

rgy

S3

S2

S1

IC

Ground State

Singlet Manifold

IC = internal conversion

Excited

GroundState

9https://cen.acs.org/biological‐chemistry/biotechnology/Chemistry‐Pictures‐Laser‐activated/97/web/2019/08

Fluorescence Emission

BLUE Light

Photo Excitation

ElectronTransfer

Light Emission

10Wikimedia

11

Photo‐induced Electron Transfer (ET)

S0A

h

S1A

S1A B

12

Photo‐induced Electron Transfer (ET)

S0A

h

S1A ET

RP=radical pairor

CS = charge‐separated state

A+ B‐

SRP

Rudolph A. Marcus1992 Nobel Prize

A+ B‐

13

Photo‐induced Electron Transfer (ET): Orbital View

S0A

h

S1A

S1A B

Donor Acceptor

14

Photo‐induced Electron Transfer (ET): Orbital View

S0A

h

S1A ET

A+ B‐

RP=radical pairor

CS = charge‐separated state

A+ B‐

SRP

Donor Acceptor

Wikipedia

Electron Transfer is one of the Most Fundamental Chemical Reactions

Zn(s) → Zn2+(aq) + 2e‐ Cu2+ (aq) + 2e‐→ Zn2+(aq)

15

16

Photo‐induced ET at the Heart of Sciences & Applications

RadicalIons

Charges (i.e. Solar Cells)

S0A

h

S1A ET

SRP

S1A B

RP=radical pairor

CS = charge‐separated state

A+ B‐ Catalysts (e.g. Solar Fuels)

17

Solar Cells: Charge Separation and Transport are Critical Steps

+‐

Non-polar Environment

18

Radical Pairs ( a Pair of e- & h+) : Critical intermediates

A+ B-Quantum biology

Magneto reception in European Robin1

Images from 1Peter Hore (Oxford Univ.)’s Website2Wikimedia Commons3Dewey Holten (Wash U)’s Website4Lakhwani, G.; Rao, A.; Friend, R. H., Annu. Rev. Phys. Chem. 2014. 65, 557

Organic Solar Cells4

Organic Light Emitting Diodes2

h

RPs Charge injection

S1

GS

Photosynthesis Reaction Center3

Quantum Information Science

19

Thermal vs Optical Electron Transfer

S0A

h

S1A ET

S1A B

A+ B-

SRP

Thermal

S0A

h

S1A

SRP

Optical

Photon absorption comes with e- transfer

20

Light Absorption: How Do We See Colors?

Solution Absorbs RED

We see BLUE!

700 nm400 nm 600 nm500 nm

Higher Energy Lower Energy

21

Molecules that Absorb Different Wavelength have Different Colors

Higher EnergyLower Energy

N N

NNPd

N

N

+HNCl-

Light Absorption: How Do We See Colors?

700 nm400 nm 600 nm500 nmHigher Energy Lower Energy

22

Light Absorption: Spectrophotometer to Quantify

Chemistry LibreTexts

23

N N

NNPd N

N

+HNCl-

700 nm400 nm 600 nm500 nm

Higher Energy Lower Energy

Wavelength (nm)

24

Thermal vs Optical Electron Transfer

S0A

h

S1A ET

S1A B

A+ B-

SRP

Thermal

S0A

h

S1A

SRP

Optical

Photon absorption comes with electron transfer

25

Charge-Transfer (CT) Absorption (very rough approximation)

Donor Acceptor

No Interactions

Donor Acceptor

Their Own Absorption

26

No Interactions of Donor and Acceptor

Absorption of DonorAbsorption of Acceptor

Wavelength (nm)

27

Let them Interact … Optical Electron Transfer

Donor Acceptor

IPD

EAA

Vacuum energy

Donor Acceptor

IE = Ionization EnergyEA = Electron Affinity

28Donor Acceptor

Donor Acceptor

CT Absorption: Orbital View

Normal (Local) CT

29

Charge-Transfer (CT) Absorption: New Absorption Band!

Absorption of DonorAbsorption of Acceptor

CT absorption band!

Wavelength (nm)

30

New Absorption Band Depends on Donor* = Color Change

Absorption of DonorAbsorption of Acceptor

CT absorption band!

Wavelength (nm)

*Keeping the same acceptor.

31

Donor AcceptorComplex

Charge-Transfer (CT) Absorption (More Accurate Picture)

ψG = a* ψ(D,A) + b*ψ(D+-A-)

ψ* ~ψ(D+-A-)

32

Higher EnergyLower Energy

N N

NNPd

N

N

+HNCl-

700 nm400 nm 600 nm500 nmHigher Energy Lower Energy

Why is CT Absorption Significant?

In one molecule: Color change with significant structural change

33

Why is CT Absorption Significant?

Color change by changing donor or acceptor, which can be very small structural change!

700 nm400 nm 600 nm500 nmHigher Energy Lower Energy

34

Charge-Transfer (CT) Absorption: Importance

Applications in organic semiconductors;Implications in organic solar cells etc…

e-

+ -

Widely observed in inorganic molecules as metal-to-ligand charge-transfer (MLCT) absorption.

35

Charge-Transfer (CT) Absorption: Experiment

Acceptor Donors

Goals:1.Understand CT absorption2.Observe CT absorption3.Analyze and “quantify” why color changes with different donors

+

Color?K

Color?K

Mes

T2

T3

KColor?

36

Charge-Transfer (CT) Absorption: Experiment

Acceptor Donors

+

Color?K

Color?K

Mes

T2

T3

KColor?

Goals:1.Understand CT absorption2.Observe CT absorption3.Analyze and “quantify” why color changes with different donors4. (Optional) Obtain association constants from absorption

spectra (see section 6 in the handout).

Recommended