Introduction Results Conclusion...Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Objective 1 Task 1.1:...

Preview:

Citation preview

0 0.5 1 1.5 2 2.5 3 3.5 4

2.5

2.51

2.52

2.53

2.54

2.55

2.56

Current (amp)

Vo

ltag

e (

Vo

lt)

Signal Loss with Aluminum (1 cm Apart)

No blockAluminum

0.5 1 1.5 2 2.5 3 3.5 4

2.5

2.51

2.52

2.53

2.54

2.55

2.56

Current (amp)

Vo

ltag

e (

Vo

lt)

Signal Loss with Alloy Steel (1 cm Apart)

No blockAlloy Steel

0.5 1 1.5 2 2.5 3 3.5 42.5

2.51

2.52

2.53

2.54

2.55

2.56

2.57

Current (amp)

Vo

ltag

e (

Vo

lt)

Signal Loss with Stainless Steel (1 cm Apart)

No blockStainless Steel

0.5 1 1.5 2 2.5 3 3.5 40

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Current (amp)

Devia

tio

n o

f In

itia

l H

all S

en

so

r V

olt

ag

e

Deviation Comparison (Alloy Steel)

1 cm apart2 cm apart3 cm apart4 cm apart

0 200 400 600 800 1000 1200 14002.5

2.51

2.52

2.53

2.54

2.55

2.56

2.57

2.58

2.59

2.6

Time (Sec)

Volta

ge (V

olt)

Hall Sensor Voltage Vs Thermoelectric Temperature Gradient

0 200 400 600 800 1000 1200 140050

100

150

200

250

300

350

400

Tem

pera

ture

(C)

TemperatureVoltage

0 10 20 30 40 50 60 70 80 90 100 110 120 130 1400

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

Time (Sec)

Volta

ge (V

olt)

Pyroelectric Voltage (Temperature Change between 24 to 70 Degree C)

Piezoelectric Effect

Pyroelectric Effect

(B)

Figure 10: Testing results for (A) Thermoelectric/Hall sensor demonstration, (B) Commercial pyroelectric ceramic

(A)

(A) (B)

(C) (D)

Figure 11: Signal loss testing results for (A) Aluminum, (B) Stainless steel, (C) Steel alloy and (D) Deviation comparison

Figure 7: (A) Commercial pyroelectric ceramic (B) After silver paint coating

Investigation on Pyroelectric Ceramic Temperature Sensors for Energy System Applications

Sarker, R.,1 Karim, H.,1 Sandoval, S.,1 Love, N.,1 Lin, Y.1,†

1 Department of Mechanical Engineering, The University of Texas at El Paso

Sensor fabrication:

Sensor fabrication: Materials: •  Pyroelectric ceramic: Lithium niobate (LiNbO3) •  Binder: Polyvinyl alcohol (PVA) Process: •  Ceramic compressed at 3 metric tons •  Cured at 150°C for 120 minutes

1.  Whatmore, R.W., “Pyroelectric Devices and Materials”, Reports on Progress in Physics, 1986, 49(12): P. 1335  

LiNbO3 nanopowders

Figure 5: Schematic for compression

Objective: •  To design, fabricate, and test wireless temperature sensors

using the principle of pyroelectricity1 •  Different geometries were achieved •  Cracked surfaces observed on

certain samples •  Silver painting of the commercial

sample

•  The first stage of the sensor fabrication was carried over successfully

•  The Hall effect sensor concept was demonstrated using a thermoelectric sensor

•  Voltage change in the Hall effect sensor can be used for temperature sensing

•  Signal loss was found when using steel alloys

Figure 1: Motivation behind this project

Rationale:

Results Conclusion

Future Work

Student Involvement

References

Methodology & Materials

Testing:

Testing results:

Introduction

Figure 3: (A) Principle of the proposed sensor, (B) Schematic and working mechanism of the sensor components

Figure 8: (A) Square sample (B) Cylindrical sample of LiNbO3

(A) (B)

Figure 9: SEM images for (A) Square sample, (B) Cylindrical sample before curing

(A) (B)

(A) (B)

Figure 6: Hall sensor and signal loss measurement (A) Schematic, (B) Actual setup. Pyroelectric ceramic testing (C) Schematic, (D) Actual setup

(C) (D)

Tests performed: •  Hal l e ffect sensor

demonstration •  Signal interference

testing •  Pyroelectric ceramic

testing

(B)

Hall Sensor

9 V

Voltage regulator

DAQ

(A)

Pyroelectric sensor

Electrodes

Winded coil

Magnetic flux

Acknowledgements This  research  was  performed  with  the  support  of  the  U.  S.  Department  of  Energy  advanced  fossil  resource  u<liza<on  research  under  the  HBCU/MI  program  with  grant  number  of  FE0011235.  

 

2013 - 2014 2014 - 2015 2015 - 2016 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Objective 1 Task 1.1: Materials determination Task 1.2: Sensor Fabrication Task 1.3: Material Evaluation Objective 2 Task 2.1: System Development Task 2.2: Sensor Calibration Task 2.3: Performance Evaluation Objective 3 Task 3.1: Torch Testing Task 3.2: Gas Turbine Testing Task 3.3: Energy System Evaluation

(A) (B)

Recommended