Intermodal trip composition: the MyWay meta-planning … · Intermodal trip composition: the MyWay...

Preview:

Citation preview

Intermodal trip composition: the

MyWay meta-planning approach

MyWay Final Workshop – Barcelona Activa - 18th February 2016

Michal Jakob

Artificial Intelligence Center

Czech Technical University in Prague

http://agents4its.net

1 | Page3/1/2016

3/1/2016 2 | Page

We’ve built an intermodal trip planner that requires (almost) no data

Tram Bus Train Metro

(Shared) Bike Electric Scooter Private car Car sharing

Bike Taxi Ride sharing Ferry

3/1/2016 3 | Page

Intermodal Plans

• Combining different (possibly both public and private)

means of transport within one trip

3/1/2016 4 | Page

Car Train Bike sharing

Intermodal Planners: State of Practice

• Algorithms for intermodal trip planning have been

recently introduced

– e.g.: Delling, Daniel, et al. "Computing multimodal journeys in

practice." Experimental Algorithms. Springer Berlin Heidelberg,

2013. 260-271.

• However, there are hardly any intermodal trip planners

out there

• Why?

3/1/2016 5 | Page

STANDARD APPROACH

3/1/2016 6 | Page

car

PT

bike

Route planning algorithm

trip plan query

suggested plans

planning graph

walk

bike sharing

De

taile

d in

form

atio

n a

bo

ut a

ll mo

de

s

METAPLANNING APPROACH

3/1/2016 7 | Page

Car route

planner API

PT trip

planner API

Bike route

planner API

BS route

planner APIMetaplan

Refinement

suggested plans

Metaplanning

trip plan query

metaplans

Metagraphconstruction

transport metagraph

approximate but intermodal

single-modal

subplannersA novel way of

planner integration

Trip Metaplanning

3/1/2016 8 | Page

~6 min ~25 min transfer: ~5 min ~8 min ~4 min

Viladecans Passeig de Gracia

Walk Train Shared bike Walk

Met

ap

lan

Metaplan Refinement Example

~6 min ~25 min transfer: ~5 min ~8 min ~4 min

Viladecans Passeig de Gracia

metaplan

refinement

Walk Train Shared bike Walk

Ref

ined

det

aile

d p

lan

Met

ap

lan

3/1/2016 9 | Page

TripPlan(id=1, time=2520, legs=5, departure=2014-11-04T17:28:00+01:00)

• TripLeg(id=1, transportMode="WALK", steps=2, duration=480, distance=289)

– TripStep(id=0; loc=41.310896, 2.024552)

– TripStep(id=1; name=Viladecans (Estació de Tren) ; loc=41.309424, 2.027405; timeFromPreviousStep=480)

• TripLeg(id=2, transportMode="TRAIN", steps=5, duration=1380, distance=14734)

– TripStep(id=0; name=Viladecans (Estació de Tren) ; type=TrainStation; loc=41.309424, 2.027405)

– ....

– TripStep(id=4; name=Passeig de Gracia ; type=TrainStation; loc=41.392525, 2.164728; timeFromPreviousStep=360)

• TripLeg(id=3, transportMode="WALK", steps=5, duration=136, distance=188)

– TripStep(id=0; loc=41.392280, 2.164990)

– TripStep(id=1; loc=41.392180, 2.164880; timeFromPreviousStep=10)

– ....

• TripLeg(id=4, transportMode="SHARED_BIKE", steps=31, duration=403, distance=1890)

– TripStep(id=0; loc=41.393106, 2.163399)

– TripStep(id=1; loc=41.392950, 2.163670; timeFromPreviousStep=6)

– ....

– TripStep(id=30; loc=41.397952, 2.180042; timeFromPreviousStep=6)

• TripLeg(id=5, transportMode="WALK", steps=5, duration=121, distance=168)

– .....

Public transport

subplanner

Bike sharing

subplanner

Metagraph Construction

3/1/2016 10 | Page

An algorithm that automatically builds an approximate intermodal model of the transport systems by querying

single-modal trip planners.

Metagraph: Model

3/1/2016 11 | Page

Cell diameter:

0.2 – 5 km

Metaedges

Real routes

Voronoi cell

Road junction

Metanode

PT stop

Bike sharing station

based on Generalized time-dependent graph representation*

* J. Hrncir and M. Jakob: Generalised Time-Dependent Graphs for Fully

Multimodal Journey Planning. In IEEE Intelligent Transportation Systems

Conference (ITSC). 2013.

Metaedges weights: travel time, cost,

emissions, physical effort

Metagraph: Construction

3/1/2016 12 | Page

Planner APIsSubplanner APIs

Fixed mode stops

Service availability zones

Nodes

Metagraph

Edges

Nykl, J. - Hrnčíř, J. - Jakob, M. Achieving Full Plan Multimodality by Integrating Multiple Incomplete Journey

Planners In: Proceedings of the 18th IEEE International Conference on Intelligent Transportation Systems . 2015,

p. 1430-1435.

103-104 API callshours of computation

Voronoi cells with

adaptive density

Edges creation

and time precomputation

Local properties

and mode location

Road network

smart subplanner querying

Metagraph Example

3/1/2016 13 | Page

# metanodes # metaedges

Catalonia 10 000 151 000

Berlin 5 000 88 000

Trikala 500 9 000

Metagraph

sizes

Ca

talo

nia

fra

gm

en

t

~1/100 nodes of a

fully detailed graph

Metasearch and Refinement

3/1/2016 14 | Page

MetaplanRefinement

up to 8 detailed plans

Metaplanning

trip plan query

20+ metaplans

Intermodal trip planning algorithm

Runtime: hundreds miliseconds

Select most diverse metaplans to refine

Invoke subplanners

Runtime: seconds

Benefit 1: Fully intermodal plans

faster than public transport-only plans

3/1/2016 15 | Page

1

2

21

3

3

Not rule-based – discovered by the metaplanning algorithm

Benefit 2: Fully intermodal plans where no

public transport-only plans exist

3/1/2016 16 | Page

Statistical Quality Evaluation

3/1/2016 17 | Page

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Catalonia

Berlin

Trikala

Increased)Usage)of)Public)Transport

Only:Intermodal:PT Other

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Catalonia

Berlin

Trikala

Intermodal+Journey+Plans+Group+Split+53+Criteria

Dominating Pareto Dominated

Computational Statistics

3/1/2016 18 | Page

Metasearch (ms)

Refinement(ms)

Total(ms)

Metagraph size (#nodes + #edges)

Catalonia 547.4 2523 3080 161 000

Trikala 48.2 200 248.9 9 500

Berlin 1371.2 (9000) (10000) 93 000

One trip planning requests results, on average, in the following number

of subplanner requests (Cat): 1.45 (car), 2.81 (PT), 1.47 (bike)

A number of speed-up techniques can be applied.

* for constrained single-criteria shortest path metasearch algorithm

Pros and Cons

• Full intermodality

• Rapid deployment

• High customizability (facilitates mobility policy injection)

• Flexibility: new transport modes / services easy to add

• Service-oriented approach: reuse of existing planning

capabilities (incl. their data maintenance processes)

• Disadvantage: slightly slower response times

3/1/2016 19 | Page

Summary

• A novel approach to intermodal planning

• Substitutes access to data with access to planning APIs

• Employs AI instead of fixed rules for intermodal

integration

• Successfully tested in three diverse living labs sites

• A good basis for mobility-as-a-service planning solutions

• Ready for deployment in new locations/areas

3/1/2016 20 | Page

213/1/2016

michal.jakob@fel.cvut.cz

Recommended