Improving the Scientific Literacy of All Students: Using Team-Taught Interdisciplinary lab courses...

Preview:

Citation preview

Improving the Scientific Literacy of All Students:

Using Team-Taught Interdisciplinary lab courses

Amy Jessen-Marshall, Ph.D.

Department of Life Science

Otterbein College,

Westerville Ohio, USA.

Goals:It is increasingly important in today’s global society for all students, including non-science majors, to become scientifically literate and understand the processes and limitations of science. Models of General Education vary, often including introductory majors courses as options for non-majors to meet science requirements, however creative course models designed for all students with an emphasis on problem solving and scientific methodology are offered as a successful alternative.

Goals:This breakout session will discuss and share innovative practices and ideas to improve scientific literacy through team-taught interdisciplinary lab-based courses within an Integrative Studies core curriculum.

Topics for discussion:

• What models for course design are most successful in developing scientific literacy for non-science majors?

Topics for discussion:

• How can you organize general education science courses to meet the needs of majors and non-majors in science?

Topics for discussion:

• What themes or content areas are most important to develop scientifically literate citizens?

Topics for discussion:

• What are the pros and cons of team-teaching interdisciplinary science courses?

First questions:

• Is science literacy important for all students?• Why?• Educated society• Consumer issues

• (quantitative literacy)

• Journalism/news • (Critical evaluation)

• Voters• (Support for science in politics)• (NSF funding)

• Jury of peers• Science is COOL!

First questions:

• Outcomes of science education different for major vs non-major?

• What are the learning outcomes?• Basic content knowledge• Application of scientific method• Critical evaluation of data• Appreciation for science as

a mode of inquiry?

• Others?

• What models for course design are most successful in developing scientific literacy for non-science majors?

• Existing models and curriculum – New?– Adaptations of existing curriculum?

• Introductory majors courses• General Distribution requirement

– Biology/ Chemistry/Physics/ Earth science• Content driven• One field of exposure• Message to non-majors?

– Lab component• Positive!• Focus on method (hopefully)

Model 1:

• Courses specifically designed for non-majors– Watered down majors courses?– Topical courses?

• Majors exempt from these courses?– Value to majors as well as non-majors?

Model 2:

Framing:

• Otterbein College- Westerville Ohio, Liberal Arts and Professional Programs- Comprehensive School.

• Enrollment 2200 Undergraduates, 1200 Continuing Studies and Masters students

• General Education Program: Integrative Studies. (Core curriculum)

General Education Models:

• General Distribution requirement – Two Year– Four Year

• Core curriculum model– Two year– Four year– Often thematic- goal is often more interdisciplinary

• Otterbein: Integrative Core Curriculum

•Ten “liberal arts” courses required through our Integrative Studies program.

• This includes two IS courses in the sciences.• Pre 2004

•Traditionally taken in the junior and senior years. • Class size has averaged between 60-100 students• Taught by one professor, in a largely lecture format• No formal laboratory experience required.

Otterbein’s Science Curriculum:Pre and Post revision

Otterbein’s Science Curriculum: Pre and Post revision

The Science Division at Otterbein decided to reformour non-majors science curriculum within ourgeneral education program (Integrative studies) Post 2004

We noticed a dichotomy in how we taught science. Department mission for Life Science:• Focus on scientific method. • Engage student in the process of science through active inquiry. • Create a community of scientists. • Create scientifically literate citizens.

Why aren’t we applying this to all students? Why just our majors?

Learning outcomes for majors and non-majors the same?

Where we started:

Specific goals for new Integrative Studies science courses:Shared with Majors courses:• Focus on scientific method. • Engage student in the process of science through active inquiry. • Create a community of scientists. • Create scientifically literate citizens.

Unique to Integrative Studies courses:• Reduce anxiety • Focus on science as a “way of knowing” (Mode of inquiry)• Team teach courses with an interdisciplinary/multidisciplinary

focus.

Is science too hard?

Watson and Crick: Structure of DNA

Rosalind Franklin

Not meant to be pedantic statement.(Common complaint of IS science coursesAnd premise of Emerti chemistry professor)

Is science harder than other subjects to learn?

Where does the perception that science is “hard” come from?

Studies on science education date back as far as you care to look.

As a group, you can’t deny that scientists like to gather informationand make comparisons. We generate questions and test them. We have a tendency to “analyze” things.

As a result, scientists, and science educators have studied and written

a lot about why people outside of the sciences thinkScience is so “hard”.

Louis Farian:NSFJune 2002

But is it unlearnable and should we give up?

What do we know?

1. Students have anxiety/avoidance/phobia about science,particularly concerning math.

Sheila Tobias has written since the 1980s about the impactof Math anxiety on students perceptions of science.

Tobias, S. (1985) “Math anxiety and physics: Some thoughts on learning 'difficult'subjects”. Physics Today, Vol. 38 Issue 6, p60

Tobias, S., (1990) “They're Not Dumb. They're Different”. Malcom, S. M., Ungar, H., Cross, K. P., Malcom, S., (eds). Change, Vol. 22 Issue 4, p11-30

And to make matters worse, Bower in (2001) reportedthat Math fears can actually subtract from memory and learning.

Bower, B. (2001) “Math fears subtract from memory, learning”. Science News, Vol. 159 Issue 26, p405

Educators in physics have studied anxiety related to this discipline and found math phobia a major indicator.

Tuminaro, J., Redish, E.F., (2004) “Understanding students’ poor performance on mathematical problem solving in physics”. AIP Conference Proceedings, Vol. 720 Issue 1, p113-116

Redish, E. F., Steinberg, R. N. (1999) “Teaching Physics: Figuring Out What Works”. Physics Today, Vol. 52 Issue 1, p24

Laukenmann, M., Bleicher, M., Fub, S., Gláser-Zikuda, M., Mayoring, P., von Rhöneck, C., (2003) “An investigation of the influence of emotional factors on learning in physics instruction”. International Journal of Science Education, Vol. 25 Issue 4, p489

Anxiety not as profound in Biology, but for non-majorscertainly still a factor.

Leonard, W.H., (2000). “How do College Students Best Learn Science?” Journcal of Computer Science and Technology . May pp. 385-388.

Mallow, J.V. (1986) Science Anxiety, Fear of Science and How to Overcome It. FL, H and H Publishing.

2. Students bring misperceptions about science into the classroom.

•Students tend to approach science as a fact based field that needs to be memorized, and the language is too foreign.Content, not process is stressed.

“By stressing the process of scientificinquiry, labs impart the content of science in a manner that is relevantto students, increasing the probabilitythat students will come to understandscience as a way of knowing.”

Carolyn Haynes, p187, Innovations in Interdisciplinary Teaching, 2002, American Council on Education, Oryx Press

• Students tend to bring information from earlier experiences into the classroom, that is very difficult to “unlearn.” This sets up

blocks to accepting different information.

Michael, J. (2002) “Misconceptions—What students think they know”. Advances in Physiology Education, Vol. 26 Issue 1, p5-6

Modell, H., Michael, J., Wenderoth, M.P., (2005) “Helping the Learner To Learn: The Role of Uncovering Misconceptions.” American Biology Teacher, Jan2005, Vol. 67 Issue 1, p20-26

Example: Evolution is defined as “Survival of the Fittest” The strongest, and fastest survive.

True or False?

False: Evolution is gradual change over time. The mechanism of evolution is Natural Selection. Natural selection shows that those individuals most capable of leaving offspring are the most “reproductively fit.” Not necessarily the strongest

or fastest.

3. Students bring different skills and histories to the classroom.

In Cross and Steadman’s “Classroom Research,” a discussion about students prerequisite knowledge and learning strategies points out that students may be quite successfulin one discipline, yet not have the skills to cross that divide into a different discipline.Cross, K.P. and Steadman, M.H. (1996)Classroom Research, Implementing the Scholarship of Teaching, San Francisco, Jossey-Bass.

This raises the very important point, that it is not that general concepts in Science are “Harder” than other subjects, it’s that science is “Different” than other subjects.

•Students may not have the skill set, or the mindset to see that difference.

•They get trapped in memorization of unrelated facts

•They fear the use of math.

•They set themselves up for frustration.

So… what can we do?

Goals of new science courses:

1. Introduce science into the Integrative studies curriculum earlier.(Move one required course to the sophomore year.)

Rationale: Reduce science anxiety by modeling that science is not so “Hard” that a student can’t handle learning college science untiltheir upper level years.

2. Introduce inquiry based labs into each course.

Rationale: To refocus student learning from fact based science to the

METHOD of science focusing on the principles of scientific inquiry

3. Team teach courses with faculty from different scientific disciplines.

Rationale: Model how the scientific disciplines approachrelated problems from different perspectives and with different techniques. We want our students to discover that science method isuniversal, and that scientific theories are even stronger whenevidence is available from several fields of study.

Key point:•Non-majors won’t have the opportunity to experience multiple fields of science if we are using Introductory Majors courses as the way to fulfill science requirements. •Students end up with a small sampling of content in onefield, where the level of content is designed for majors.

•Interdisciplinary courses- • Model how the scientific disciplines approach

related problems from different perspectives and with different techniques.

• Science method is universal • Scientific theories are even stronger when evidence is available

from several fields of study.

How can you organize general education science courses to meet the needs of majors and non-majors in science?

Value for Majors to experience this too?

We think so- Integrative Studies science courses are also required for science majors.

Courses offered to date:•Origins (Paleontology/ Molecular Biology)•The Atom (Chemistry/ Physics)•Why sex? (Ecology/ Molecular Biology)•Exobiology (Physics/ Microbiology)•Water (Ecology/ Chemistry)

•Faculty driven topics- •Content is not the driving goal!

What themes or content areas are most important to develop scientifically literate citizens?

Overall our goal is to alleviate science anxiety and increase scientificreasoning skills by building the courses around topics both students and faculty will find intriguing and relevant as wellas by designing the courses for a sophomore level audience and inso doing better prepare our students for the second upper level

science courses.

So… have we been successful?

What are the pros and cons of team-teaching interdisciplinary science courses?

Impact of team teaching on student learning:

The rationale is that students working with faculty from two different scientific disciplines will get the opportunityto synthesis ideas and see how questions in science are addressed in many different ways.

Carolyn Haynes, 2002, Chapter 2, Enhancing Interdisciplinary Through Team teaching.Chapter 9, Transforming Undergraduate Science through Interdisciplinary Inquiry.American Council on Education, ORYX Press

The evidence for this success so far is qualitative. Students whoparticipated in the team taught classes overwhelmingly report a positive experience. However, teasing apart team teaching successesand failures is more difficult, due to the nature of the team, and thespecific topic of the class.

Team Teaching Experience related to Sex

P value 0.009

Team Teaching Impact over time

0

5

10

15

20

25

# of students

Fall 2004 Spring 2006 Winter 2007

Class offerings

Team Teaching scores over time for Origins

Negative

Positive

One of our main focuses has been impact on science anxiety.

A series of statistical comparisons were made to assess levels of pre-existing Science anxiety in the populations, and to correlate variables related to anxiety.

Of the students who responded, •157 reported some level of science anxiety •170 reported no significant anxiety

Variables considered to determine the underlyingfactors that correlate with anxiety.

1. Current GPA 2. Year in College3. Major (grouped by Academic Division)4. Previous High School experience in science courses.5. Gender

Combined effect of sex and High School Experience on Science Anxiety

0

10

20

30

40

50

60

# of students

High School

Positive-Anxiety

Positive- NoAnxietyNegative-Anxiety

Negative- NoAnxiety

Mixed-AnxietyMixed- No

AnxietyNeutral-Anxiety

Neutral- NoAnxietyPositive-Anxiety

Positive- NoAnxietyNegative-Anxiety

Negative- NoAnxiety

Mixed-AnxietyMixed- No

AnxietyNeutral-Anxiety

Neutral- NoAnxiety

Sex Female Male

Sex and High School Experience affect on Anxiety

P value= 0.0003

But did the students actually learn more about scientific method

by doing lab activities?

To determine whether students had improved in their ability to identify the scientific method, I used a blinded coding scale. This was repeated by a second Coder and the range of improvement was averaged.

For example. A student response of “Using science to answer questions” was given a score of (1) for limited knowledge.Other responses were given scores of (2)- (5) based on using code

Words, including hypothesis, data, repeatability, controls, experiment. Pre and post test responses were randomized, scored and resorted to match students response and calculate the range of improvement.

For example a student who made significant improvement in their definition would show a scoring range of 4.

A student who showed, no improvement, or who was strong at the beginning, would have no range score difference.

These ranges were then summarized for each class and statistical significance was evaluated.

Results of course comparison for the ability to define scientific method.

0

0.2

0.4

0.6

0.8

1

1.2

Average Value Added

IS240 IS350/400

Class number

Class Impact on Science Method

0

10

20

30

40

50

60

70

80

90

# of students

1 2 3 4 5 6

Definition codes

Definition of science method: Pre and post class scores

240 start

240 end

350/400 start

350/400 end

So what do we know? Summary:

1. Gender is a strong predictor of science anxiety, and is closelytied to experience in High School science.Anxiety is difficult to alleviate, as evidenced by both versions of our non-majors science courses.

2. The majority of students regardless of science background, see the value of learning about science in today’s society, and understand that participating in labs is a major part of learning.

3. Focusing on science method and modeling its use through labs and team teaching does result in statistically significant improvement in the ability to define the process of science method.

4. Team teaching is difficult to assess, although overall it has beenreported as positive. Individual courses are more or less successful. small correlation that women are more critical of team teaching.

5. All classes are effective at increasing student awareness and interest in science related current events.

Where do we go from here?

Focus on upper level courses!

Three years ago- Otterbein selected byAmerican Association of Colleges and Universitiesto be one of sixteen schools in a joint project:“Shared Futures: General Education and Global Learning.”

Piloting courses throughout our Core curriculumfocused on Global Learning. (Not just science)

Science & Global Learning:

Definitions and Learning Objectives

Current Working Definition:

“To foster student understanding and appreciation of science and its cultural significance. To empower students to develop and apply scientific and analytical skills both in further understanding of themselves and human nature; and in an ethical context towards solving global, national and local problems.”

ScienceDefinitions and Learning Objectives

Two INST Science Courses: Developmental Model

Lower level course: Fundamentals of scientific inquiry…

Upper level course: The main theme of these courses is to show how science and scientific data are foundational to society, through the exploration of a current global issue. The courses will explore how science is applied to an issue, and how other influences also impact the issue.

ScienceDefinitions and Learning Objectives

Common “Global” Objectives for the course:•Understanding of data as the foundation of course topic•Understanding of the active building of scientific body of knowledge:

new advances, future challenges•Understanding of how the issue affects parts of the world differently.•Understanding of how cultures react to the global issue differently.•Understanding of how student decisions/actions impact the issue (locally and globally).•Ethics and the possibility of addressing issue in a sustainable way.

ScienceExamples of Specific Syllabi objectives:

INST350: Being in Nature- Plagues and Pestilence

This course is focused on the global nature of infectious disease. Discovering how plagues and pandemics, both historical and emerging, impact human health and play a role in how societies are shaped is an important piece of understanding your role as a global citizen. Infectious disease does not recognize state or national boundaries, and the interconnected relationship between microbiology, virology, epidemiology, sociology, politics and history provide a framework for making decisions in today’s world. This course will engage you in issues that affect your personal health, the health of your community and the health of people across the planet, my goal is to help you find those connections.

ScienceExamples of Specific Syllabi objectives:

Learning Objectives:By the time you complete this course you should be able to:

1. identify and describe what types of microbes are considered pathogens.2. describe historical plagues and pandemics that shaped civilizations.3. identify key advances in medicine and technology that contain or prevent pandemics.4. describe the current state of newly emerging and reemerging infectious agents that influence current societies.5. compare historical events to current events and draw inferences for future pandemic risks.6. identify current challenges in human health care and treatment of infectious disease that impact future pandemic risks.7. consider how society and culture recognize and respond to pandemic threat, based on societal practices and resource availability. 8. reflect on how your major and other courses integrate into these topics and what role you play in human health, personally and as a global citizen.

What themes or content areas are most importantto develop scientifically literate citizens?

Courses offered to date:IS350: Plagues and PandemicsIS400: Earth Science and Humankind-

focus on Coral Reefs IS400: Earth Science and Humankind-

focus on Sustainable energy usageIS360: Energy and Society (in development)

Others-

Current Otterbein I.S. science curriculum

Lower level team-taught multidisciplinary course:•Model how the scientific disciplines approach

related problems from different perspectives and with different techniques.

• Science method is universal • Scientific theories are even stronger when evidence is available

from several fields of study.

Upper level course on application of science to global issues

Acknowledgments:

Otterbein College Science DivisionDepartment of Life ScienceMary Gahbauer, Hal Lescinsky, Simon Lawrance, Sarah Bouchard, Dean Johnston and Dave RobertsonThe Integrative Studies Program

Otterbein Center for Teaching and LearningLeslie Ortquist-AhrensSoTL Professional Learning CommunityThe McGregor FundNational Science Foundation Grant # 0536681AACU Shared Futures FIPSE Grant

Recommended